Cargando…

Visual acuity and contrast sensitivity of adult zebrafish

BACKGROUND: The aim of this study was to evaluate the visual acuity of adult zebrafish by assessing the optokinetic reflex. Using a modified commercially available optomotor device (OptoMotry®), virtual three-dimensional gratings of variable spatial frequency or contrast were presented to adult zebr...

Descripción completa

Detalles Bibliográficos
Autores principales: Tappeiner, Christoph, Gerber, Simon, Enzmann, Volker, Balmer, Jasmin, Jazwinska, Anna, Tschopp, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453526/
https://www.ncbi.nlm.nih.gov/pubmed/22643065
http://dx.doi.org/10.1186/1742-9994-9-10
Descripción
Sumario:BACKGROUND: The aim of this study was to evaluate the visual acuity of adult zebrafish by assessing the optokinetic reflex. Using a modified commercially available optomotor device (OptoMotry®), virtual three-dimensional gratings of variable spatial frequency or contrast were presented to adult zebrafish. In a first experiment, visual acuity was evaluated by changing the spatial frequency at different angular velocities. Thereafter, contrast sensitivity was evaluated by changing the contrast level at different spatial frequencies. RESULTS: At the different tested angular velocities (10, 15, 20, 25, and 30 d/s) and a contrast of 100%, visual acuity values ranged from 0.56 to 0.58 c/d. Contrast sensitivity measured at different spatial frequencies (0.011, 0.025, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.55 c/d) with an angular velocity of 10 d/s and 25 d/s revealed an inverted U-shaped contrast sensitivity curve. The highest mean contrast sensitivity (±SD) values of 20.49 ± 4.13 and 25.24 ± 8.89 were found for a spatial frequency of 0.05 c/d (angular velocity 10 d/s) and 0.1 c/d (angular velocity 25 d/s), respectively. CONCLUSIONS: Visual acuity and contrast sensitivity measurements in adult zebrafish with the OptoMotry® device are feasible and reveal a remarkably higher VA compared to larval zebrafish and mice.