Cargando…

Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease

Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, SuJin, Song, Ki-Duk, Lesourne, Renaud, Lee, Jan, Pinkhasov, Julia, Li, LiQi, El-Khoury, Dalal, Love, Paul E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457736/
https://www.ncbi.nlm.nih.gov/pubmed/22945921
http://dx.doi.org/10.1084/jem.20120058
Descripción
Sumario:Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability.