Cargando…

Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

BACKGROUND: Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. trico...

Descripción completa

Detalles Bibliográficos
Autores principales: Valenzuela, Jacob, Mazurie, Aurelien, Carlson, Ross P, Gerlach, Robin, Cooksey, Keith E, Peyton, Brent M, Fields, Matthew W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457861/
https://www.ncbi.nlm.nih.gov/pubmed/22672912
http://dx.doi.org/10.1186/1754-6834-5-40
_version_ 1782244578096578560
author Valenzuela, Jacob
Mazurie, Aurelien
Carlson, Ross P
Gerlach, Robin
Cooksey, Keith E
Peyton, Brent M
Fields, Matthew W
author_facet Valenzuela, Jacob
Mazurie, Aurelien
Carlson, Ross P
Gerlach, Robin
Cooksey, Keith E
Peyton, Brent M
Fields, Matthew W
author_sort Valenzuela, Jacob
collection PubMed
description BACKGROUND: Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P) and whole-genome transcripts were monitored over time via RNA-sequence determination. RESULTS: The specific Nile Red (NR) fluorescence (NR fluorescence per cell) increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC) levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold) at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO(3)(-) were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases). CONCLUSIONS: The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous DIC levels. Based upon overall low gene expression levels for fatty acid synthesis, the results also suggest that the build-up of precursors to the acetyl-CoA carboxylases may play a more significant role in TAG synthesis rather than the actual enzyme levels of acetyl-CoA carboxylases per se. The presented insights into the types and timing of cellular responses to inorganic carbon will help maximize photoautotrophic carbon flow to lipid accumulation.
format Online
Article
Text
id pubmed-3457861
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34578612012-09-26 Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum Valenzuela, Jacob Mazurie, Aurelien Carlson, Ross P Gerlach, Robin Cooksey, Keith E Peyton, Brent M Fields, Matthew W Biotechnol Biofuels Research BACKGROUND: Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P) and whole-genome transcripts were monitored over time via RNA-sequence determination. RESULTS: The specific Nile Red (NR) fluorescence (NR fluorescence per cell) increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC) levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold) at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO(3)(-) were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases). CONCLUSIONS: The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous DIC levels. Based upon overall low gene expression levels for fatty acid synthesis, the results also suggest that the build-up of precursors to the acetyl-CoA carboxylases may play a more significant role in TAG synthesis rather than the actual enzyme levels of acetyl-CoA carboxylases per se. The presented insights into the types and timing of cellular responses to inorganic carbon will help maximize photoautotrophic carbon flow to lipid accumulation. BioMed Central 2012-06-06 /pmc/articles/PMC3457861/ /pubmed/22672912 http://dx.doi.org/10.1186/1754-6834-5-40 Text en Copyright ©2012 Valenzuela et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Valenzuela, Jacob
Mazurie, Aurelien
Carlson, Ross P
Gerlach, Robin
Cooksey, Keith E
Peyton, Brent M
Fields, Matthew W
Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title_full Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title_fullStr Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title_full_unstemmed Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title_short Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum
title_sort potential role of multiple carbon fixation pathways during lipid accumulation in phaeodactylum tricornutum
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457861/
https://www.ncbi.nlm.nih.gov/pubmed/22672912
http://dx.doi.org/10.1186/1754-6834-5-40
work_keys_str_mv AT valenzuelajacob potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT mazurieaurelien potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT carlsonrossp potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT gerlachrobin potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT cookseykeithe potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT peytonbrentm potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum
AT fieldsmattheww potentialroleofmultiplecarbonfixationpathwaysduringlipidaccumulationinphaeodactylumtricornutum