Cargando…
Cofilin Activation during Podosome Belt Formation in Osteoclasts
Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457939/ https://www.ncbi.nlm.nih.gov/pubmed/23049890 http://dx.doi.org/10.1371/journal.pone.0045909 |
Sumario: | Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form supra-molecular structures called podosome belts or sealing zones on mineralized substrates. Podosomes contain two distinct domains, an actin-rich core enriched in actin polymerization regulators, surrounded by a ring of signaling and plaque molecules. The organization of podosome arrays into belts is linked to actin dynamics. Cofilin is an actin-severing protein that is known to regulate cytoskeleton architecture and cell migration. Cofilin is present in lamellipodia and invadopodia where it regulates actin polymerization. In this report, we show that cofilin is a novel component of the podosome belt, the mature osteoclast adhesion structure. Time-course analysis demonstrated that cofilin is activated during primary osteoclast differentiation, at the time of podosome belt assembly. Immunofluorescence studies reveal a localization of active cofilin in the podosome core structure, whereas phosphorylated, inactive cofilin is concentrated in the podosome cloud. Pharmacological studies unraveled the role of a specific cofilin phosphatase to achieve cofilin activation during osteoclast differentiation. We ruled out the implication of PP1/PP2A and PTEN in this process, and rather provided evidence for the involvement of SSH1. In summary, our data involve cofilin as a regulator of podosome organization that is activated during osteoclast differentiation by a RANKL-mediated signaling pathway targeting the SSH1 phosphatase. |
---|