Cargando…

Presence of IgG Anti-gp160/120 Antibodies Confers Higher HIV Capture Capacity to Erythrocytes from HIV-Positive Individuals

BACKGROUND: HIV binding has been demonstrated in erythrocytes from HIV-positive and HIV-negative individuals. However, the presence of immunoglobulins G anti-HIV (IgG anti-HIV) in erythrocytes from HIV-positive individuals is still to be elucidated. Moreover, the capacity of erythrocytes from HIV-po...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia, Maria Noé, dos Ramos Farias, Maria Sol, Fazzi, Lucia, Grasso, Daniel, Rabinovich, Roberto Daniel, Ávila, Maria Mercedes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458065/
https://www.ncbi.nlm.nih.gov/pubmed/23049866
http://dx.doi.org/10.1371/journal.pone.0045808
Descripción
Sumario:BACKGROUND: HIV binding has been demonstrated in erythrocytes from HIV-positive and HIV-negative individuals. However, the presence of immunoglobulins G anti-HIV (IgG anti-HIV) in erythrocytes from HIV-positive individuals is still to be elucidated. Moreover, the capacity of erythrocytes from HIV-positive individuals to capture an additional amount of HIV has not been studied. Indeed, it is unknown if HIV binding to erythrocytes in HIV-positive persons could have consequences on the cell-free infectious virus available. METHODOLOGY/PRINCIPAL FINDINGS: IgGs anti-HIV associated to erythrocytes were found in 77.3% (58/75) of the HIV-positive individuals studied and the IgGs anti-gp160 and anti-p24 were the most frequently found. We found a positive association between detectable plasma viral load (pVL) and presence of IgGs anti-HIV associated to erythrocyte (p<0.005), though the anti-p24/160 were present with or without detectable pVL. The HIV capture capacity was higher in erythrocytes from HIV-positive than HIV-negative individuals (p<0.0001). Furthermore, among the HIV-positive individuals the higher viral capture capacity was associated with the presence of anti-gp160/gp120 on erythrocytes. Moreover, the viral capture by erythrocytes was independent of pVL (rho = 0.022, p = 0.8817). Additionally, reduction of cell-free infectious virus and available viral load was observed in the presence of erythrocytes from HIV-positive individuals. CONCLUSIONS/SIGNIFICANCE: Results suggest that in HIV-positive individuals, erythrocytes are capable of capturing high amounts of HIV by the presence of IgGs anti-gp160/120 on their membranes and this may produce a reduction in the available free virus. Finally, the current measurement of pVL would underestimate the real viral quantity due to the HIV binding through specific antibodies to erythrocytes.