Cargando…
Analyzing large biological datasets with association networks
Due to advances in high-throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches that process collected data into new knowledge in a timely manner. In this study, we propose a computational framework for discoverin...
Autores principales: | Karpinets, Tatiana V., Park, Byung H., Uberbacher, Edward C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458522/ https://www.ncbi.nlm.nih.gov/pubmed/22638576 http://dx.doi.org/10.1093/nar/gks403 |
Ejemplares similares
-
noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise
por: Moutsopoulos, Ilias, et al.
Publicado: (2021) -
MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets
por: Lemieux, Sebastien, et al.
Publicado: (2017) -
BioSeq-BLM: a platform for analyzing DNA, RNA and protein sequences based on biological language models
por: Li, Hong-Liang, et al.
Publicado: (2021) -
MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets
por: Singh, Urminder, et al.
Publicado: (2020) -
Analyzing editosome function in high-throughput
por: Del Campo, Cristian, et al.
Publicado: (2020)