Cargando…
Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential
Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458836/ https://www.ncbi.nlm.nih.gov/pubmed/23050024 http://dx.doi.org/10.1371/journal.pone.0046391 |
_version_ | 1782244712662433792 |
---|---|
author | Salnikov, Alexei V. Liu, Li Platen, Mitja Gladkich, Jury Salnikova, Olga Ryschich, Eduard Mattern, Jürgen Moldenhauer, Gerhard Werner, Jens Schemmer, Peter Büchler, Markus W. Herr, Ingrid |
author_facet | Salnikov, Alexei V. Liu, Li Platen, Mitja Gladkich, Jury Salnikova, Olga Ryschich, Eduard Mattern, Jürgen Moldenhauer, Gerhard Werner, Jens Schemmer, Peter Büchler, Markus W. Herr, Ingrid |
author_sort | Salnikov, Alexei V. |
collection | PubMed |
description | Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary. For in vitro studies, five established PDA cell lines classified as less (CSC(low)) and highly aggressive CSC-like cells (CSC(high)) were examined by single and double immunofluorescence microscopy, wound-, transwell-, and time-lapse microscopy. HIF-1α and Slug, as well as HIF-2α and CD133 were co-expressed pointing to a putative co-existence of hypoxia, EMT and CSCs in vivo. CSC(high) cells exhibited high basal expression of the mesenchymal Vimentin protein but low or absent expression of the epithelial marker E-cadherin, with the opposite result in CSC(low) cells. Hypoxia triggered altering of cell morphology from an epithelial to a mesenchymal phenotype, which was more pronounced in CSC(high) cells. Concomitantly, E-cadherin expression was reduced and expression of Vimentin, Slug, Twist2 and Zeb1 enhanced. While hypoxia caused migration in all cell lines, velocity along with the percentage of migrating, polarized and pseudopodia-forming cells was significantly higher in CSC(high) cells. These data indicate that hypoxia-induced EMT occurs in PDA and several other tumor entities. However although hypoxia-induced EMT signaling occurs in all tumor cell populations, only the stem-like cells acquire high migratory potential and thus may be responsible for invasion and metastasis. |
format | Online Article Text |
id | pubmed-3458836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34588362012-10-03 Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential Salnikov, Alexei V. Liu, Li Platen, Mitja Gladkich, Jury Salnikova, Olga Ryschich, Eduard Mattern, Jürgen Moldenhauer, Gerhard Werner, Jens Schemmer, Peter Büchler, Markus W. Herr, Ingrid PLoS One Research Article Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary. For in vitro studies, five established PDA cell lines classified as less (CSC(low)) and highly aggressive CSC-like cells (CSC(high)) were examined by single and double immunofluorescence microscopy, wound-, transwell-, and time-lapse microscopy. HIF-1α and Slug, as well as HIF-2α and CD133 were co-expressed pointing to a putative co-existence of hypoxia, EMT and CSCs in vivo. CSC(high) cells exhibited high basal expression of the mesenchymal Vimentin protein but low or absent expression of the epithelial marker E-cadherin, with the opposite result in CSC(low) cells. Hypoxia triggered altering of cell morphology from an epithelial to a mesenchymal phenotype, which was more pronounced in CSC(high) cells. Concomitantly, E-cadherin expression was reduced and expression of Vimentin, Slug, Twist2 and Zeb1 enhanced. While hypoxia caused migration in all cell lines, velocity along with the percentage of migrating, polarized and pseudopodia-forming cells was significantly higher in CSC(high) cells. These data indicate that hypoxia-induced EMT occurs in PDA and several other tumor entities. However although hypoxia-induced EMT signaling occurs in all tumor cell populations, only the stem-like cells acquire high migratory potential and thus may be responsible for invasion and metastasis. Public Library of Science 2012-09-26 /pmc/articles/PMC3458836/ /pubmed/23050024 http://dx.doi.org/10.1371/journal.pone.0046391 Text en © 2012 Salnikov et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Salnikov, Alexei V. Liu, Li Platen, Mitja Gladkich, Jury Salnikova, Olga Ryschich, Eduard Mattern, Jürgen Moldenhauer, Gerhard Werner, Jens Schemmer, Peter Büchler, Markus W. Herr, Ingrid Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title | Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title_full | Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title_fullStr | Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title_full_unstemmed | Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title_short | Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential |
title_sort | hypoxia induces emt in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458836/ https://www.ncbi.nlm.nih.gov/pubmed/23050024 http://dx.doi.org/10.1371/journal.pone.0046391 |
work_keys_str_mv | AT salnikovalexeiv hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT liuli hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT platenmitja hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT gladkichjury hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT salnikovaolga hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT ryschicheduard hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT matternjurgen hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT moldenhauergerhard hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT wernerjens hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT schemmerpeter hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT buchlermarkusw hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential AT herringrid hypoxiainducesemtinlowandhighlyaggressivepancreatictumorcellsbutonlycellswithcancerstemcellcharacteristicsacquirepronouncedmigratorypotential |