Cargando…
Possible Role of the WDR3 Gene on Genome Stability in Thyroid Cancer Patients
The role of the WDR3 gene on genomic instability has been evaluated in a group of 115 differentiated thyroid cancer (DTC) patients. Genomic instability has been measured according to the response of peripheral blood lymphocytes to ionizing radiation (0.5 Gy). The response has been measured with the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458856/ https://www.ncbi.nlm.nih.gov/pubmed/23049746 http://dx.doi.org/10.1371/journal.pone.0044288 |
Sumario: | The role of the WDR3 gene on genomic instability has been evaluated in a group of 115 differentiated thyroid cancer (DTC) patients. Genomic instability has been measured according to the response of peripheral blood lymphocytes to ionizing radiation (0.5 Gy). The response has been measured with the micronucleus (MN) test evaluating the frequency of binucleated cells with MN (BNMN), both before and after the irradiation. No differences between genotypes, for the BNMN frequencies previous the irradiation, were observed. Nevertheless significant decreases in DNA damage after irradiation were observed in individuals carrying the variant alleles for each of the three genotyped SNPs: rs3754127 [−8.85 (−15.01 to −2.70), P<0.01]; rs3765501 [−8.98 (−15.61 to −2.36), P<0.01]; rs4658973 [−8.70 (−14.94 to −2.46), P<0.01]. These values correspond to those obtained assuming a dominant model. This study shows for the first time that WDR3 can modulate genome stability. |
---|