Cargando…
Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances
In this study, a technique for the optimization of the optical characteristics of multi-channel filters after fabrication is proposed. The multi-channel filter under consideration is based on a Si photonic crystal (PhC), tunable liquid crystal and opto-fluidic technologies. By filling air grooves in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458977/ https://www.ncbi.nlm.nih.gov/pubmed/22788755 http://dx.doi.org/10.1186/1556-276X-7-387 |
Sumario: | In this study, a technique for the optimization of the optical characteristics of multi-channel filters after fabrication is proposed. The multi-channel filter under consideration is based on a Si photonic crystal (PhC), tunable liquid crystal and opto-fluidic technologies. By filling air grooves in the one-dimensional, Si-Air PhC with a nematic liquid crystal, an efficiently coupled multi-channel filter can be realised in which a wide stop band is used for channel separation over a wide frequency range. By selectively tuning the refractive index in various coupled cavities, continuous individual tuning of the central channel (or edge channels) up to 25% of the total channel spacing is demonstrated. To our knowledge, this is the first report on the electro-optical solution for the compensation of fabrication tolerances in an integrated platform. |
---|