Cargando…

Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation

Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Mangerich, Aswin, Bürkle, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459245/
https://www.ncbi.nlm.nih.gov/pubmed/23050038
http://dx.doi.org/10.1155/2012/321653
Descripción
Sumario:Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both processes. On the one hand, PARP1 serves as a genomic caretaker as it participates in chromatin remodelling, DNA repair, telomere maintenance, resolution of replicative stress, and cell cycle control. On the other hand, PARP1 acts as a mediator of inflammation due to its function as a regulator of NF-κB and other transcription factors and its potential to induce cell death. Consequently, PARP1 represents an interesting player in several aging mechanisms and is discussed as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here, we review the molecular mechanisms underlying the various roles of PARP1 in longevity and aging with special emphasis on cellular studies and we briefly discuss the results in the context of in vivo studies in mice and humans.