Cargando…
Protective role of fibrates in cardiac ischemia/reperfusion
Prevention of myocardial injury has been considered as the most important therapeutic challenge of today. Fibrates, the agonists of the peroxisome proliferator-activated receptor (PPAR)-a receptor, have been regarded as potent therapeutic agents in this context. Hence, the present study has been des...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459449/ https://www.ncbi.nlm.nih.gov/pubmed/23057006 http://dx.doi.org/10.4103/2231-4040.101016 |
Sumario: | Prevention of myocardial injury has been considered as the most important therapeutic challenge of today. Fibrates, the agonists of the peroxisome proliferator-activated receptor (PPAR)-a receptor, have been regarded as potent therapeutic agents in this context. Hence, the present study has been designed to investigate the effect of fibrates, i.e., Clofibrate and Fenofibrate, the potent agonists PPAR-a, on ischemia-reperfusion (I/R)-induced myocardial injury. The isolated Langendorff-perfused rat hearts were subjected to global ischemia for 30 minutes followed by reperfusion for 120 minutes. Myocardial infarct size and the release of lactate dehydrogenase (LDH) and creatine kinase (CK) in coronary effluent have been conducted to assess the degree of cardiac injury. Moreover, the oxidative stress in the heart was assessed by measuring lipid peroxidation, superoxide anion generation, and reduced glutathione. Clofibrate and Fenofibrate showed cardioprotection against I/R-induced myocardial injury in rat hearts as assessed in terms of reductions in myocardial infarct size, LDH, and CK levels in coronary effluent along with reduction in I/R-induced oxidative stress. It may be concluded that the observed cardioprotective potential of Clofibrate and Fenofibrate against I/R-induced myocardial injury was due to the reductions in infarct size and oxidative stress. |
---|