Cargando…
A novel biclustering approach with iterative optimization to analyze gene expression data
OBJECTIVE: With the dramatic increase in microarray data, biclustering has become a promising tool for gene expression analysis. Biclustering has been proven to be superior over clustering in identifying multifunctional genes and searching for co-expressed genes under a few specific conditions; that...
Autores principales: | Sutheeworapong, Sawannee, Ota, Motonori, Ohta, Hiroyuki, Kinoshita, Kengo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459542/ https://www.ncbi.nlm.nih.gov/pubmed/23055751 http://dx.doi.org/10.2147/AABC.S32622 |
Ejemplares similares
-
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
A visual analytics approach for understanding biclustering results from microarray data
por: Santamaría, Rodrigo, et al.
Publicado: (2008) -
Discovering biclusters in gene expression data based on high-dimensional linear geometries
por: Gan, Xiangchao, et al.
Publicado: (2008) -
Biclustering of gene expression data by non-smooth non-negative matrix factorization
por: Carmona-Saez, Pedro, et al.
Publicado: (2006) -
ARBic: an all-round biclustering algorithm for analyzing gene expression data
por: Liu, Xiangyu, et al.
Publicado: (2023)