Cargando…
Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures
Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subj...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459947/ https://www.ncbi.nlm.nih.gov/pubmed/23028905 http://dx.doi.org/10.1371/journal.pone.0045282 |
_version_ | 1782244890174816256 |
---|---|
author | Bliss, Lindsay A. Sams, Malik R. Deep-Soboslay, Amy Ren-Patterson, Renee Jaffe, Andrew E. Chenoweth, Josh G. Jaishankar, Amritha Kleinman, Joel E. Hyde, Thomas M. |
author_facet | Bliss, Lindsay A. Sams, Malik R. Deep-Soboslay, Amy Ren-Patterson, Renee Jaffe, Andrew E. Chenoweth, Josh G. Jaishankar, Amritha Kleinman, Joel E. Hyde, Thomas M. |
author_sort | Bliss, Lindsay A. |
collection | PubMed |
description | Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1–120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases. |
format | Online Article Text |
id | pubmed-3459947 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34599472012-10-01 Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures Bliss, Lindsay A. Sams, Malik R. Deep-Soboslay, Amy Ren-Patterson, Renee Jaffe, Andrew E. Chenoweth, Josh G. Jaishankar, Amritha Kleinman, Joel E. Hyde, Thomas M. PLoS One Research Article Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1–120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases. Public Library of Science 2012-09-27 /pmc/articles/PMC3459947/ /pubmed/23028905 http://dx.doi.org/10.1371/journal.pone.0045282 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Bliss, Lindsay A. Sams, Malik R. Deep-Soboslay, Amy Ren-Patterson, Renee Jaffe, Andrew E. Chenoweth, Josh G. Jaishankar, Amritha Kleinman, Joel E. Hyde, Thomas M. Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title | Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title_full | Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title_fullStr | Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title_full_unstemmed | Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title_short | Use of Postmortem Human Dura Mater and Scalp for Deriving Human Fibroblast Cultures |
title_sort | use of postmortem human dura mater and scalp for deriving human fibroblast cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459947/ https://www.ncbi.nlm.nih.gov/pubmed/23028905 http://dx.doi.org/10.1371/journal.pone.0045282 |
work_keys_str_mv | AT blisslindsaya useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT samsmalikr useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT deepsoboslayamy useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT renpattersonrenee useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT jaffeandrewe useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT chenowethjoshg useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT jaishankaramritha useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT kleinmanjoele useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures AT hydethomasm useofpostmortemhumanduramaterandscalpforderivinghumanfibroblastcultures |