Cargando…

Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish

The mechanisms leading to latency and reactivation of human tuberculosis are still unclear, mainly due to the lack of standardized animal models for latent mycobacterial infection. In this longitudinal study of the progression of a mycobacterial disease in adult zebrafish, we show that an experiment...

Descripción completa

Detalles Bibliográficos
Autores principales: Parikka, Mataleena, Hammarén, Milka M., Harjula, Sanna-Kaisa E., Halfpenny, Nicholas J. A., Oksanen, Kaisa E., Lahtinen, Marika J., Pajula, Elina T., Iivanainen, Antti, Pesu, Marko, Rämet, Mika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459992/
https://www.ncbi.nlm.nih.gov/pubmed/23028333
http://dx.doi.org/10.1371/journal.ppat.1002944
_version_ 1782244901077909504
author Parikka, Mataleena
Hammarén, Milka M.
Harjula, Sanna-Kaisa E.
Halfpenny, Nicholas J. A.
Oksanen, Kaisa E.
Lahtinen, Marika J.
Pajula, Elina T.
Iivanainen, Antti
Pesu, Marko
Rämet, Mika
author_facet Parikka, Mataleena
Hammarén, Milka M.
Harjula, Sanna-Kaisa E.
Halfpenny, Nicholas J. A.
Oksanen, Kaisa E.
Lahtinen, Marika J.
Pajula, Elina T.
Iivanainen, Antti
Pesu, Marko
Rämet, Mika
author_sort Parikka, Mataleena
collection PubMed
description The mechanisms leading to latency and reactivation of human tuberculosis are still unclear, mainly due to the lack of standardized animal models for latent mycobacterial infection. In this longitudinal study of the progression of a mycobacterial disease in adult zebrafish, we show that an experimental intraperitoneal infection with a low dose (∼35 bacteria) of Mycobacterium marinum, results in the development of a latent disease in most individuals. The infection is characterized by limited mortality (25%), stable bacterial loads 4 weeks following infection and constant numbers of highly organized granulomas in few target organs. The majority of bacteria are dormant during a latent mycobacterial infection in zebrafish, and can be activated by resuscitation promoting factor ex vivo. In 5–10% of tuberculosis cases in humans, the disease is reactivated usually as a consequence of immune suppression. In our model, we are able to show that reactivation can be efficiently induced in infected zebrafish by γ-irradiation that transiently depletes granulo/monocyte and lymphocyte pools, as determined by flow cytometry. This immunosuppression causes reactivation of the dormant mycobacterial population and a rapid outgrowth of bacteria, leading to 88% mortality in four weeks. In this study, the adult zebrafish presents itself as a unique non-mammalian vertebrate model for studying the development of latency, regulation of mycobacterial dormancy, as well as reactivation of latent or subclinical tuberculosis. The possibilities for screening for host and pathogen factors affecting the disease progression, and identifying novel therapeutic agents and vaccine targets make this established model especially attractive.
format Online
Article
Text
id pubmed-3459992
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34599922012-10-01 Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish Parikka, Mataleena Hammarén, Milka M. Harjula, Sanna-Kaisa E. Halfpenny, Nicholas J. A. Oksanen, Kaisa E. Lahtinen, Marika J. Pajula, Elina T. Iivanainen, Antti Pesu, Marko Rämet, Mika PLoS Pathog Research Article The mechanisms leading to latency and reactivation of human tuberculosis are still unclear, mainly due to the lack of standardized animal models for latent mycobacterial infection. In this longitudinal study of the progression of a mycobacterial disease in adult zebrafish, we show that an experimental intraperitoneal infection with a low dose (∼35 bacteria) of Mycobacterium marinum, results in the development of a latent disease in most individuals. The infection is characterized by limited mortality (25%), stable bacterial loads 4 weeks following infection and constant numbers of highly organized granulomas in few target organs. The majority of bacteria are dormant during a latent mycobacterial infection in zebrafish, and can be activated by resuscitation promoting factor ex vivo. In 5–10% of tuberculosis cases in humans, the disease is reactivated usually as a consequence of immune suppression. In our model, we are able to show that reactivation can be efficiently induced in infected zebrafish by γ-irradiation that transiently depletes granulo/monocyte and lymphocyte pools, as determined by flow cytometry. This immunosuppression causes reactivation of the dormant mycobacterial population and a rapid outgrowth of bacteria, leading to 88% mortality in four weeks. In this study, the adult zebrafish presents itself as a unique non-mammalian vertebrate model for studying the development of latency, regulation of mycobacterial dormancy, as well as reactivation of latent or subclinical tuberculosis. The possibilities for screening for host and pathogen factors affecting the disease progression, and identifying novel therapeutic agents and vaccine targets make this established model especially attractive. Public Library of Science 2012-09-27 /pmc/articles/PMC3459992/ /pubmed/23028333 http://dx.doi.org/10.1371/journal.ppat.1002944 Text en © 2012 Parikka et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Parikka, Mataleena
Hammarén, Milka M.
Harjula, Sanna-Kaisa E.
Halfpenny, Nicholas J. A.
Oksanen, Kaisa E.
Lahtinen, Marika J.
Pajula, Elina T.
Iivanainen, Antti
Pesu, Marko
Rämet, Mika
Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title_full Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title_fullStr Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title_full_unstemmed Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title_short Mycobacterium marinum Causes a Latent Infection that Can Be Reactivated by Gamma Irradiation in Adult Zebrafish
title_sort mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459992/
https://www.ncbi.nlm.nih.gov/pubmed/23028333
http://dx.doi.org/10.1371/journal.ppat.1002944
work_keys_str_mv AT parikkamataleena mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT hammarenmilkam mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT harjulasannakaisae mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT halfpennynicholasja mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT oksanenkaisae mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT lahtinenmarikaj mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT pajulaelinat mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT iivanainenantti mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT pesumarko mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish
AT rametmika mycobacteriummarinumcausesalatentinfectionthatcanbereactivatedbygammairradiationinadultzebrafish