Cargando…

Iterative integral parameter identification of a respiratory mechanics model

BACKGROUND: Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Schranz, Christoph, Docherty, Paul D, Chiew, Yeong Shiong, Möller, Knut, Chase, J Geoffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460758/
https://www.ncbi.nlm.nih.gov/pubmed/22809585
http://dx.doi.org/10.1186/1475-925X-11-38
_version_ 1782244978863374336
author Schranz, Christoph
Docherty, Paul D
Chiew, Yeong Shiong
Möller, Knut
Chase, J Geoffrey
author_facet Schranz, Christoph
Docherty, Paul D
Chiew, Yeong Shiong
Möller, Knut
Chase, J Geoffrey
author_sort Schranz, Christoph
collection PubMed
description BACKGROUND: Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. METHODS: An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. RESULTS: The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. CONCLUSION: These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
format Online
Article
Text
id pubmed-3460758
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34607582012-10-02 Iterative integral parameter identification of a respiratory mechanics model Schranz, Christoph Docherty, Paul D Chiew, Yeong Shiong Möller, Knut Chase, J Geoffrey Biomed Eng Online Research BACKGROUND: Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. METHODS: An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. RESULTS: The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. CONCLUSION: These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application. BioMed Central 2012-07-18 /pmc/articles/PMC3460758/ /pubmed/22809585 http://dx.doi.org/10.1186/1475-925X-11-38 Text en Copyright ©2012 Schranz et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Schranz, Christoph
Docherty, Paul D
Chiew, Yeong Shiong
Möller, Knut
Chase, J Geoffrey
Iterative integral parameter identification of a respiratory mechanics model
title Iterative integral parameter identification of a respiratory mechanics model
title_full Iterative integral parameter identification of a respiratory mechanics model
title_fullStr Iterative integral parameter identification of a respiratory mechanics model
title_full_unstemmed Iterative integral parameter identification of a respiratory mechanics model
title_short Iterative integral parameter identification of a respiratory mechanics model
title_sort iterative integral parameter identification of a respiratory mechanics model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460758/
https://www.ncbi.nlm.nih.gov/pubmed/22809585
http://dx.doi.org/10.1186/1475-925X-11-38
work_keys_str_mv AT schranzchristoph iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT dochertypauld iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT chiewyeongshiong iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT mollerknut iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT chasejgeoffrey iterativeintegralparameteridentificationofarespiratorymechanicsmodel