Cargando…
Quercetin-induced inhibition and synergistic activity with cisplatin – a chemotherapeutic strategy for nasopharyngeal carcinoma cells
BACKGROUND: Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, genetic predisposition and environmental as well as dietary influence as aetiological factors. Standard NPC treatment regimes, such as radiotherapy and concurrent chemotherap...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460759/ https://www.ncbi.nlm.nih.gov/pubmed/22809533 http://dx.doi.org/10.1186/1475-2867-12-34 |
Sumario: | BACKGROUND: Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, genetic predisposition and environmental as well as dietary influence as aetiological factors. Standard NPC treatment regimes, such as radiotherapy and concurrent chemotherapy with cytotoxic drugs, can produce undesirable complications often associated with significant toxicity. Here, we report the effects of a widely distributed flavonoid, quercetin, on cell proliferation, apoptosis and cell cycle arrest. The effects of combining quercetin and cisplatin on human NPC cells were explored. METHODS: Cell proliferation was monitored by the dynamic, impedance-based cell analyzer (xCELLigence system) and the MTS assay. Ki67 proliferation antigen and fatty acid synthase (FASN) level was examined by Western blotting. Flow cytometry was also carried out to study the effects of quercetin on cell cycle and apoptosis status. RESULTS: At 100 μM, quercetin inhibited cell proliferation and decreased expression of FASN and Ki67 antigen. Cell cycle analysis revealed a substantial increase in the proportion of cells in the G2/M phase. We also demonstrated the enhanced cytotoxic effects of quercetin treatment in concomitant with the chemotherapeutic drug, cisplatin, in cultured NPC cells. The combination index (CI) value of quercetin-cisplatin combination was < 1, indicating synergism. CONCLUSIONS: Our study showed that quercetin exhibited synergistic effects with cisplatin against NPC cells. Dose-reduction index (DRI) values > 1 implied the possibility of reducing the cisplatin dosage required to treat NPC, with the addition of quercetin. In turn, this could reduce the risk of cisplatin-associated toxicity. The potential of combining quercetin with cisplatin as a chemotherapeutic strategy for treatment of NPC should be explored further. |
---|