Cargando…

Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation

BACKGROUND: Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawasaki, Hiroshi, Iwai, Lena, Tanno, Kaori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460770/
https://www.ncbi.nlm.nih.gov/pubmed/22716093
http://dx.doi.org/10.1186/1756-6606-5-24
Descripción
Sumario:BACKGROUND: Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and diseases of these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals are still poorly available. RESULTS: Here we developed and validated a rapid and efficient technique that enables genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Transgene-expressing ferret babies were obtained within a few weeks after electroporation. GFP expression was detectable in the embryo and was observed at least 2 months after birth. Our technique was useful for expressing transgenes in both superficial and deep cortical neurons, and for examining the dendritic morphologies and axonal trajectories of GFP-expressing neurons in ferrets. Furthermore, multiple genes were efficiently co-expressed in the same neurons. CONCLUSION: Our method promises to be a powerful tool for investigating the fundamental mechanisms underlying the development, function and pathophysiology of brain structures which are unique to higher mammals.