Cargando…
Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation
BACKGROUND: Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460770/ https://www.ncbi.nlm.nih.gov/pubmed/22716093 http://dx.doi.org/10.1186/1756-6606-5-24 |
_version_ | 1782244981730181120 |
---|---|
author | Kawasaki, Hiroshi Iwai, Lena Tanno, Kaori |
author_facet | Kawasaki, Hiroshi Iwai, Lena Tanno, Kaori |
author_sort | Kawasaki, Hiroshi |
collection | PubMed |
description | BACKGROUND: Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and diseases of these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals are still poorly available. RESULTS: Here we developed and validated a rapid and efficient technique that enables genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Transgene-expressing ferret babies were obtained within a few weeks after electroporation. GFP expression was detectable in the embryo and was observed at least 2 months after birth. Our technique was useful for expressing transgenes in both superficial and deep cortical neurons, and for examining the dendritic morphologies and axonal trajectories of GFP-expressing neurons in ferrets. Furthermore, multiple genes were efficiently co-expressed in the same neurons. CONCLUSION: Our method promises to be a powerful tool for investigating the fundamental mechanisms underlying the development, function and pathophysiology of brain structures which are unique to higher mammals. |
format | Online Article Text |
id | pubmed-3460770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34607702012-09-29 Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation Kawasaki, Hiroshi Iwai, Lena Tanno, Kaori Mol Brain Methodology BACKGROUND: Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and diseases of these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals are still poorly available. RESULTS: Here we developed and validated a rapid and efficient technique that enables genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Transgene-expressing ferret babies were obtained within a few weeks after electroporation. GFP expression was detectable in the embryo and was observed at least 2 months after birth. Our technique was useful for expressing transgenes in both superficial and deep cortical neurons, and for examining the dendritic morphologies and axonal trajectories of GFP-expressing neurons in ferrets. Furthermore, multiple genes were efficiently co-expressed in the same neurons. CONCLUSION: Our method promises to be a powerful tool for investigating the fundamental mechanisms underlying the development, function and pathophysiology of brain structures which are unique to higher mammals. BioMed Central 2012-06-20 /pmc/articles/PMC3460770/ /pubmed/22716093 http://dx.doi.org/10.1186/1756-6606-5-24 Text en Copyright ©2012 Kawasaki et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Kawasaki, Hiroshi Iwai, Lena Tanno, Kaori Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title | Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title_full | Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title_fullStr | Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title_full_unstemmed | Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title_short | Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
title_sort | rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460770/ https://www.ncbi.nlm.nih.gov/pubmed/22716093 http://dx.doi.org/10.1186/1756-6606-5-24 |
work_keys_str_mv | AT kawasakihiroshi rapidandefficientgeneticmanipulationofgyrencephaliccarnivoresusinginuteroelectroporation AT iwailena rapidandefficientgeneticmanipulationofgyrencephaliccarnivoresusinginuteroelectroporation AT tannokaori rapidandefficientgeneticmanipulationofgyrencephaliccarnivoresusinginuteroelectroporation |