Cargando…
Involvement of LIM kinase 1 in actin polarization in human CD4 T cells
Chemokine binding to cognate receptors induces actin dynamics that are a major driving force for T cell migration and chemotactic motility. HIV-1 binding to the chemokine coreceptor CXCR4 initiates chemotactic signaling, mimicking chemokine-induced actin dynamics to facilitate infection processes su...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460845/ https://www.ncbi.nlm.nih.gov/pubmed/23060964 http://dx.doi.org/10.4161/cib.20165 |
_version_ | 1782244995947823104 |
---|---|
author | Xu, Xuehua Guo, Jia Vorster, Paul Wu, Yuntao |
author_facet | Xu, Xuehua Guo, Jia Vorster, Paul Wu, Yuntao |
author_sort | Xu, Xuehua |
collection | PubMed |
description | Chemokine binding to cognate receptors induces actin dynamics that are a major driving force for T cell migration and chemotactic motility. HIV-1 binding to the chemokine coreceptor CXCR4 initiates chemotactic signaling, mimicking chemokine-induced actin dynamics to facilitate infection processes such as entry, early DNA synthesis, and nuclear migration. Recently, we identified that HIV-triggered early actin polymerization is mediated through the Rac1-PAK1/2-LIMK1-cofilin pathway. Inhibition of LIMK1 (LIM domain kinase 1), a kinase phosphorylating cofilin, through shRNA knockdown decreases actin polymerization and T cell chemotaxis toward SDF-1. The LIMK1 knockdown T cells also supported lower viral entry, DNA synthesis and nuclear migration, suggesting a critical role of LIMK1-mediated actin dynamics in the initiation of HIV-1 infection. Surprisingly, LIMK1 knockdown in CEM-SS T cells did not lead to an overall change in the ratio of phospho-cofilin to total cofilin although there was a measurable decrease in the amount of actin filaments in cells. The decrease in filamentous actin in LIMK1 knockdown cells was found to mainly occur in polarized cap region rich in F-actin. These results suggest that LIMK1 may be involved in spontaneous actin polarization in transformed T cells. The inhibition of T cell chemotaxis by LIMK1 knockdown likely result from inhibition of localized LIMK1 activation and cofilin phosphorylation that are required for polarized actin polymerization for directional cell migration. The inhibition of HIV-1 infection by LIMK1 knockdown may also result from the decrease of actin-rich membrane protrusions that may be preferred viral entry sites in T cells. |
format | Online Article Text |
id | pubmed-3460845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-34608452012-10-11 Involvement of LIM kinase 1 in actin polarization in human CD4 T cells Xu, Xuehua Guo, Jia Vorster, Paul Wu, Yuntao Commun Integr Biol Article Addendum Chemokine binding to cognate receptors induces actin dynamics that are a major driving force for T cell migration and chemotactic motility. HIV-1 binding to the chemokine coreceptor CXCR4 initiates chemotactic signaling, mimicking chemokine-induced actin dynamics to facilitate infection processes such as entry, early DNA synthesis, and nuclear migration. Recently, we identified that HIV-triggered early actin polymerization is mediated through the Rac1-PAK1/2-LIMK1-cofilin pathway. Inhibition of LIMK1 (LIM domain kinase 1), a kinase phosphorylating cofilin, through shRNA knockdown decreases actin polymerization and T cell chemotaxis toward SDF-1. The LIMK1 knockdown T cells also supported lower viral entry, DNA synthesis and nuclear migration, suggesting a critical role of LIMK1-mediated actin dynamics in the initiation of HIV-1 infection. Surprisingly, LIMK1 knockdown in CEM-SS T cells did not lead to an overall change in the ratio of phospho-cofilin to total cofilin although there was a measurable decrease in the amount of actin filaments in cells. The decrease in filamentous actin in LIMK1 knockdown cells was found to mainly occur in polarized cap region rich in F-actin. These results suggest that LIMK1 may be involved in spontaneous actin polarization in transformed T cells. The inhibition of T cell chemotaxis by LIMK1 knockdown likely result from inhibition of localized LIMK1 activation and cofilin phosphorylation that are required for polarized actin polymerization for directional cell migration. The inhibition of HIV-1 infection by LIMK1 knockdown may also result from the decrease of actin-rich membrane protrusions that may be preferred viral entry sites in T cells. Landes Bioscience 2012-07-01 /pmc/articles/PMC3460845/ /pubmed/23060964 http://dx.doi.org/10.4161/cib.20165 Text en Copyright © 2012 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Article Addendum Xu, Xuehua Guo, Jia Vorster, Paul Wu, Yuntao Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title | Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title_full | Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title_fullStr | Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title_full_unstemmed | Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title_short | Involvement of LIM kinase 1 in actin polarization in human CD4 T cells |
title_sort | involvement of lim kinase 1 in actin polarization in human cd4 t cells |
topic | Article Addendum |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460845/ https://www.ncbi.nlm.nih.gov/pubmed/23060964 http://dx.doi.org/10.4161/cib.20165 |
work_keys_str_mv | AT xuxuehua involvementoflimkinase1inactinpolarizationinhumancd4tcells AT guojia involvementoflimkinase1inactinpolarizationinhumancd4tcells AT vorsterpaul involvementoflimkinase1inactinpolarizationinhumancd4tcells AT wuyuntao involvementoflimkinase1inactinpolarizationinhumancd4tcells |