Cargando…
Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs
The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid membrane environment. This paper focuses on applying a single...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460959/ https://www.ncbi.nlm.nih.gov/pubmed/23028674 http://dx.doi.org/10.1371/journal.pone.0044911 |
_version_ | 1782245022340481024 |
---|---|
author | Gao, Tingjuan Petrlova, Jitka He, Wei Huser, Thomas Kudlick, Wieslaw Voss, John Coleman, Matthew A. |
author_facet | Gao, Tingjuan Petrlova, Jitka He, Wei Huser, Thomas Kudlick, Wieslaw Voss, John Coleman, Matthew A. |
author_sort | Gao, Tingjuan |
collection | PubMed |
description | The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid membrane environment. This paper focuses on applying a single step method leading to the formation of nanolipoprotein particles (NLPs) capable of solubilizing functional GPCRs for biophysical characterization. NLPs were used to demonstrate increased solubility for multiple GPCRs such as the Neurokinin 1 Receptor (NK1R), the Adrenergic Receptor â2 (ADRB2) and the Dopamine Receptor D1 (DRD1). All three GPCRs showed affinity for their specific ligands using a simple dot blot assay. The NK1R was characterized in greater detail to demonstrate correct folding of the ligand pocket with nanomolar specificity. Electron paramagnetic resonance (EPR) spectroscopy validated the correct folding of the NK1R binding pocket for Substance P (SP). Fluorescence correlation spectroscopy (FCS) was used to identify SP-bound NK1R-containing NLPs and measure their dissociation rate in an aqueous environment. The dissociation constant was found to be 83 nM and was consistent with dot blot assays. This study represents a unique combinational approach involving the single step de novo production of a functional GPCR combined with biophysical techniques to demonstrate receptor association with the NLPs and binding affinity to specific ligands. Such a combined approach provides a novel path forward to screen and characterize GPCRs for drug discovery as well as structural studies outside of the complex cellular environment. |
format | Online Article Text |
id | pubmed-3460959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34609592012-10-01 Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs Gao, Tingjuan Petrlova, Jitka He, Wei Huser, Thomas Kudlick, Wieslaw Voss, John Coleman, Matthew A. PLoS One Research Article The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid membrane environment. This paper focuses on applying a single step method leading to the formation of nanolipoprotein particles (NLPs) capable of solubilizing functional GPCRs for biophysical characterization. NLPs were used to demonstrate increased solubility for multiple GPCRs such as the Neurokinin 1 Receptor (NK1R), the Adrenergic Receptor â2 (ADRB2) and the Dopamine Receptor D1 (DRD1). All three GPCRs showed affinity for their specific ligands using a simple dot blot assay. The NK1R was characterized in greater detail to demonstrate correct folding of the ligand pocket with nanomolar specificity. Electron paramagnetic resonance (EPR) spectroscopy validated the correct folding of the NK1R binding pocket for Substance P (SP). Fluorescence correlation spectroscopy (FCS) was used to identify SP-bound NK1R-containing NLPs and measure their dissociation rate in an aqueous environment. The dissociation constant was found to be 83 nM and was consistent with dot blot assays. This study represents a unique combinational approach involving the single step de novo production of a functional GPCR combined with biophysical techniques to demonstrate receptor association with the NLPs and binding affinity to specific ligands. Such a combined approach provides a novel path forward to screen and characterize GPCRs for drug discovery as well as structural studies outside of the complex cellular environment. Public Library of Science 2012-09-28 /pmc/articles/PMC3460959/ /pubmed/23028674 http://dx.doi.org/10.1371/journal.pone.0044911 Text en © 2012 Gao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gao, Tingjuan Petrlova, Jitka He, Wei Huser, Thomas Kudlick, Wieslaw Voss, John Coleman, Matthew A. Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title | Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title_full | Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title_fullStr | Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title_full_unstemmed | Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title_short | Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs |
title_sort | characterization of de novo synthesized gpcrs supported in nanolipoprotein discs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460959/ https://www.ncbi.nlm.nih.gov/pubmed/23028674 http://dx.doi.org/10.1371/journal.pone.0044911 |
work_keys_str_mv | AT gaotingjuan characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT petrlovajitka characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT hewei characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT huserthomas characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT kudlickwieslaw characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT vossjohn characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs AT colemanmatthewa characterizationofdenovosynthesizedgpcrssupportedinnanolipoproteindiscs |