Cargando…

Genomic regions in crop–wild hybrids of lettuce are affected differently in different environments: implications for crop breeding

Many crops contain domestication genes that are generally considered to lower fitness of crop–wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it i...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartman, Yorike, Hooftman, Danny A P, Uwimana, Brigitte, van de Wiel, Clemens C M, Smulders, Marinus J M, Visser, Richard G F, van Tienderen, Peter H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461145/
https://www.ncbi.nlm.nih.gov/pubmed/23028403
http://dx.doi.org/10.1111/j.1752-4571.2012.00240.x
Descripción
Sumario:Many crops contain domestication genes that are generally considered to lower fitness of crop–wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness. We performed quantitative trait loci (QTL) analyses on fitness(-related) traits in two different field environments employing recombinant inbred lines from a cross between cultivated Lactuca sativa and its wild relative Lactuca serriola. We identified a region on linkage group 5 where the crop allele consistently conferred a selective advantage (increasing fitness to 212% and 214%), whereas on linkage group 7, a region conferred a selective disadvantage (reducing fitness to 26% and 5%), mainly through delaying flowering. The probability for a putative transgene spreading would therefore depend strongly on the insertion location. Comparison of these field results with greenhouse data from a previous study using the same lines showed considerable differences in QTL patterns. This indicates that care should be taken when extrapolating experiments from the greenhouse, and that the impact of domestication genes has to be assessed under field conditions.