Cargando…
Statistical Properties of Multivariate Distance Matrix Regression for High-Dimensional Data Analysis
Multivariate distance matrix regression (MDMR) analysis is a statistical technique that allows researchers to relate P variables to an additional M factors collected on N individuals, where P ≫ N. The technique can be applied to a number of research settings involving high-dimensional data types suc...
Autores principales: | Zapala, Matthew A., Schork, Nicholas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461701/ https://www.ncbi.nlm.nih.gov/pubmed/23060897 http://dx.doi.org/10.3389/fgene.2012.00190 |
Ejemplares similares
-
Random Projection for Fast and Efficient Multivariate Correlation Analysis of High-Dimensional Data: A New Approach
por: Grellmann, Claudia, et al.
Publicado: (2016) -
Grand Challenges in Statistical Genetics/Genomics Methodology
por: Tiwari, Hemant K., et al.
Publicado: (2011) -
Partial Least Squares Regression Can Aid in Detecting Differential Abundance of Multiple Features in Sets of Metagenomic Samples
por: Libiger, Ondrej, et al.
Publicado: (2015) -
Multivariate statistical analysis: a high-dimensional approach
por: Serdobolskii, V
Publicado: (2000) -
Determining Genetic Causal Variants Through Multivariate Regression Using Mixture Model Penalty
por: Sundar, V. S., et al.
Publicado: (2018)