Cargando…
Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma
A previous study found that eosinophil infiltration and Th2 cell recruitment are important causes of chronic lung inflammation in asthma. The plant flavonoid acacetin is known to have an anti-inflammatory effect in vitro. This study aims to investigate the anti-inflammatory effect of orally administ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462452/ https://www.ncbi.nlm.nih.gov/pubmed/23049614 http://dx.doi.org/10.1155/2012/910520 |
_version_ | 1782245178450378752 |
---|---|
author | Huang, Wen-Chung Liou, Chian-Jiun |
author_facet | Huang, Wen-Chung Liou, Chian-Jiun |
author_sort | Huang, Wen-Chung |
collection | PubMed |
description | A previous study found that eosinophil infiltration and Th2 cell recruitment are important causes of chronic lung inflammation in asthma. The plant flavonoid acacetin is known to have an anti-inflammatory effect in vitro. This study aims to investigate the anti-inflammatory effect of orally administered acacetin in ovalbumin- (OVA-) sensitized asthmatic mice and its underlying molecular mechanism. BALB/c mice were sensitized by intraperitoneal OVA injection. OVA-sensitized mice were fed acacetin from days 21 to 27. Acacetin treatment attenuated airway hyperresponsiveness and reduced eosinophil infiltration and goblet cell hyperplasia in lung tissue. Additionally, eotaxin-1- and Th2-associated cytokines were inhibited in bronchoalveolar lavage fluid and suppressed the level of OVA-IgE in serum. Human bronchial epithelial (BEAS-2B) cells were used to examine the effect of acacetin on proinflammatory cytokines, chemokines, and cell adhesion molecule production in vitro. At the molecular level, acacetin significantly reduced IL-6, IL-8, intercellular adhesion molecule-1, and eotaxin-1 in activated BEAS-2B cells. Acacetin also significantly suppressed the ability of eosinophils to adhere to inflammatory BEAS-2B cells. These results suggest that dietary acacetin may improve asthma symptoms in OVA-sensitized mice. |
format | Online Article Text |
id | pubmed-3462452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-34624522012-10-04 Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma Huang, Wen-Chung Liou, Chian-Jiun Evid Based Complement Alternat Med Research Article A previous study found that eosinophil infiltration and Th2 cell recruitment are important causes of chronic lung inflammation in asthma. The plant flavonoid acacetin is known to have an anti-inflammatory effect in vitro. This study aims to investigate the anti-inflammatory effect of orally administered acacetin in ovalbumin- (OVA-) sensitized asthmatic mice and its underlying molecular mechanism. BALB/c mice were sensitized by intraperitoneal OVA injection. OVA-sensitized mice were fed acacetin from days 21 to 27. Acacetin treatment attenuated airway hyperresponsiveness and reduced eosinophil infiltration and goblet cell hyperplasia in lung tissue. Additionally, eotaxin-1- and Th2-associated cytokines were inhibited in bronchoalveolar lavage fluid and suppressed the level of OVA-IgE in serum. Human bronchial epithelial (BEAS-2B) cells were used to examine the effect of acacetin on proinflammatory cytokines, chemokines, and cell adhesion molecule production in vitro. At the molecular level, acacetin significantly reduced IL-6, IL-8, intercellular adhesion molecule-1, and eotaxin-1 in activated BEAS-2B cells. Acacetin also significantly suppressed the ability of eosinophils to adhere to inflammatory BEAS-2B cells. These results suggest that dietary acacetin may improve asthma symptoms in OVA-sensitized mice. Hindawi Publishing Corporation 2012 2012-09-24 /pmc/articles/PMC3462452/ /pubmed/23049614 http://dx.doi.org/10.1155/2012/910520 Text en Copyright © 2012 W.-C. Huang and C.-J. Liou. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Huang, Wen-Chung Liou, Chian-Jiun Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title | Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title_full | Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title_fullStr | Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title_full_unstemmed | Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title_short | Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma |
title_sort | dietary acacetin reduces airway hyperresponsiveness and eosinophil infiltration by modulating eotaxin-1 and th2 cytokines in a mouse model of asthma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462452/ https://www.ncbi.nlm.nih.gov/pubmed/23049614 http://dx.doi.org/10.1155/2012/910520 |
work_keys_str_mv | AT huangwenchung dietaryacacetinreducesairwayhyperresponsivenessandeosinophilinfiltrationbymodulatingeotaxin1andth2cytokinesinamousemodelofasthma AT liouchianjiun dietaryacacetinreducesairwayhyperresponsivenessandeosinophilinfiltrationbymodulatingeotaxin1andth2cytokinesinamousemodelofasthma |