Cargando…

Integrating Experimentation and Quantitative Modeling to Enhance Discovery of Beta Amyloid Lowering Therapeutics for Alzheimer’s Disease

Drug discovery can benefit from a proactive-knowledge-attainment philosophy which strategically integrates experimentation and pharmacokinetic/pharmacodynamic (PK/PD) modeling. Our programs for Alzheimer’s disease (AD) illustrate such an approach. Compounds that inhibit the generation of brain beta...

Descripción completa

Detalles Bibliográficos
Autor principal: Lu, Yasong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463859/
https://www.ncbi.nlm.nih.gov/pubmed/23060797
http://dx.doi.org/10.3389/fphar.2012.00177
Descripción
Sumario:Drug discovery can benefit from a proactive-knowledge-attainment philosophy which strategically integrates experimentation and pharmacokinetic/pharmacodynamic (PK/PD) modeling. Our programs for Alzheimer’s disease (AD) illustrate such an approach. Compounds that inhibit the generation of brain beta amyloid (Aβ), especially Aβ42, are being pursued as potential disease-modifying therapeutics. Complexities in the PK/Aβ relationship for these compounds have been observed and the data require an advanced approach for analysis. We established a semimechanistic PK/PD model that can describe the PK/Aβ data by accounting for Aβ generation and clearance. The modeling characterizes the in vivo PD (i.e., Aβ lowering) properties of compounds and generates insights about the salient biological systems. The learning from the modeling enables us to establish a framework for predicting in vivo Aβ lowering from in vitro parameters.