Cargando…

Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression

Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Tainaê, Baungratz, Monaliza Marizete, Haskel, Suellen Priscila, de Lima, Daniela Delwing, da Cruz, Júlia Niehues, Magro, Débora Delwing Dal, da Cruz, José Geraldo Pereira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464062/
https://www.ncbi.nlm.nih.gov/pubmed/23055736
http://dx.doi.org/10.2147/NDT.S31714
Descripción
Sumario:Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin extend to the central nervous system. The effects of simvastatin combined with fluoxetine provide an exciting and potential paradigm to decreased anxiety and depression. Thus, the present paper investigates the possibility of synergistic interactions between simvastatin and fluoxetine in models of anxiety and depression. We investigated the effects of subchronically administered simvastatin (1 or 10 mg/kg/day) combined with fluoxetine (2 or 10 mg/kg) at 24, 5, and 1 hour on adult rats before conducting behavioral tests. The results indicate that simvastatin and/or fluoxetine treatment reduces anxiety-like behaviors in the elevated plus-maze and open-field tests. Our results showed that simvastatin and/or fluoxetine induced a significant increase in the swimming activity during the forced swimming test (antidepressant effect), with a concomitant increase in climbing time in simvastatin-treated animals only (noradrenergic activation). We hypothesize that anxiolytic and antidepressant effects of simvastatin and/or fluoxetine produce their behavioral effects through similar mechanisms and provide an important foundation for future preclinical research.