Cargando…
A Model of Filiform Hair Distribution on the Cricket Cercus
Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is covered with between 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464291/ https://www.ncbi.nlm.nih.gov/pubmed/23056357 http://dx.doi.org/10.1371/journal.pone.0046588 |
Sumario: | Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is covered with between 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement axes, are very stereotypical across different animals in this species, and the development of this system has been studied extensively. Although hypotheses regarding the mechanisms underlying pattern development of the hair array have been proposed in previous studies, no quantitative modeling studies have been published that test these hypotheses. We demonstrate that several aspects of the global pattern of mechanosensory hairs can be predicted with considerable accuracy using a simple model based on two independent morphogen systems. One system constrains inter-hair spacing, and the second system determines the directional movement axes of the hairs. |
---|