Cargando…
Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake
The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464439/ https://www.ncbi.nlm.nih.gov/pubmed/23050093 http://dx.doi.org/10.1038/srep00709 |
Sumario: | The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip and causing high-amplitude tsunami waves. For a long time the rupture remained in a 100–150 km wide slab segment delimited by oceanic fractures, before propagating further to the southwest. The occurrence of large slip at shallow depths likely favored the propagation across contiguous slab segments and contributed to build up a giant earthquake. The lateral variations in the slab geometry may act as geometrical or mechanical barriers finally controlling the earthquake rupture nucleation, evolution and arrest. |
---|