Cargando…

High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing

BACKGROUND: Variation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this varia...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, Elizabeth M, Moate, Peter J, Bath, Carolyn R, Davidson, Sophie E, Sawbridge, Tim I, Guthridge, Kathryn M, Cocks, Ben G, Hayes, Ben J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464612/
https://www.ncbi.nlm.nih.gov/pubmed/22747657
http://dx.doi.org/10.1186/1471-2156-13-53
_version_ 1782245441137541120
author Ross, Elizabeth M
Moate, Peter J
Bath, Carolyn R
Davidson, Sophie E
Sawbridge, Tim I
Guthridge, Kathryn M
Cocks, Ben G
Hayes, Ben J
author_facet Ross, Elizabeth M
Moate, Peter J
Bath, Carolyn R
Davidson, Sophie E
Sawbridge, Tim I
Guthridge, Kathryn M
Cocks, Ben G
Hayes, Ben J
author_sort Ross, Elizabeth M
collection PubMed
description BACKGROUND: Variation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this variation may be improved by utilizing untargeted massively parallel sequencing (MPS), that is, sequencing without targeted amplification of genes. The objective of this study was to develop a method which used MPS to generate “rumen metagenome profiles”, and to investigate if these profiles were repeatable among samples taken from the same cow. Given faecal samples are much easier to obtain than rumen fluid samples; we also investigated whether rumen metagenome profiles were predictive of faecal metagenome profiles. RESULTS: Rather than focusing on individual organisms within the rumen, our method used MPS data to generate quantitative rumen micro-biome profiles, regardless of taxonomic classifications. The method requires a previously assembled reference metagenome. A number of such reference metagenomes were considered, including two rumen derived metagenomes, a human faecal microflora metagenome and a reference metagenome made up of publically available prokaryote sequences. Sequence reads from each test sample were aligned to these references. The “rumen metagenome profile” was generated from the number of the reads that aligned to each contig in the database. We used this method to test the hypothesis that rumen fluid microbial community profiles vary more between cows than within multiple samples from the same cow. Rumen fluid samples were taken from three cows, at three locations within the rumen. DNA from the samples was sequenced on the Illumina GAIIx. When the reads were aligned to a rumen metagenome reference, the rumen metagenome profiles were repeatable (P < 0.00001) by cow regardless of location of sampling rumen fluid. The repeatability was estimated at 9%, albeit with a high standard error, reflecting the small number of animals in the study. Finally, we compared rumen microbial profiles to faecal microbial profiles. Our hypothesis, that there would be a stronger correlation between faeces and rumen fluid from the same cow than between faeces and rumen fluid from different cows, was not supported by our data (with much greater significance of rumen versus faeces effect than animal effect in mixed linear model). CONCLUSIONS: We have presented a simple and high throughput method of metagenome profiling to assess the similarity of whole metagenomes, and illustrated its use on two novel datasets. This method utilises widely used freeware. The method should be useful in the exploration and comparison of metagenomes.
format Online
Article
Text
id pubmed-3464612
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34646122012-10-05 High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing Ross, Elizabeth M Moate, Peter J Bath, Carolyn R Davidson, Sophie E Sawbridge, Tim I Guthridge, Kathryn M Cocks, Ben G Hayes, Ben J BMC Genet Methodology Article BACKGROUND: Variation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this variation may be improved by utilizing untargeted massively parallel sequencing (MPS), that is, sequencing without targeted amplification of genes. The objective of this study was to develop a method which used MPS to generate “rumen metagenome profiles”, and to investigate if these profiles were repeatable among samples taken from the same cow. Given faecal samples are much easier to obtain than rumen fluid samples; we also investigated whether rumen metagenome profiles were predictive of faecal metagenome profiles. RESULTS: Rather than focusing on individual organisms within the rumen, our method used MPS data to generate quantitative rumen micro-biome profiles, regardless of taxonomic classifications. The method requires a previously assembled reference metagenome. A number of such reference metagenomes were considered, including two rumen derived metagenomes, a human faecal microflora metagenome and a reference metagenome made up of publically available prokaryote sequences. Sequence reads from each test sample were aligned to these references. The “rumen metagenome profile” was generated from the number of the reads that aligned to each contig in the database. We used this method to test the hypothesis that rumen fluid microbial community profiles vary more between cows than within multiple samples from the same cow. Rumen fluid samples were taken from three cows, at three locations within the rumen. DNA from the samples was sequenced on the Illumina GAIIx. When the reads were aligned to a rumen metagenome reference, the rumen metagenome profiles were repeatable (P < 0.00001) by cow regardless of location of sampling rumen fluid. The repeatability was estimated at 9%, albeit with a high standard error, reflecting the small number of animals in the study. Finally, we compared rumen microbial profiles to faecal microbial profiles. Our hypothesis, that there would be a stronger correlation between faeces and rumen fluid from the same cow than between faeces and rumen fluid from different cows, was not supported by our data (with much greater significance of rumen versus faeces effect than animal effect in mixed linear model). CONCLUSIONS: We have presented a simple and high throughput method of metagenome profiling to assess the similarity of whole metagenomes, and illustrated its use on two novel datasets. This method utilises widely used freeware. The method should be useful in the exploration and comparison of metagenomes. BioMed Central 2012-07-02 /pmc/articles/PMC3464612/ /pubmed/22747657 http://dx.doi.org/10.1186/1471-2156-13-53 Text en Copyright ©2012 Ross et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Ross, Elizabeth M
Moate, Peter J
Bath, Carolyn R
Davidson, Sophie E
Sawbridge, Tim I
Guthridge, Kathryn M
Cocks, Ben G
Hayes, Ben J
High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title_full High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title_fullStr High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title_full_unstemmed High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title_short High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
title_sort high throughput whole rumen metagenome profiling using untargeted massively parallel sequencing
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464612/
https://www.ncbi.nlm.nih.gov/pubmed/22747657
http://dx.doi.org/10.1186/1471-2156-13-53
work_keys_str_mv AT rosselizabethm highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT moatepeterj highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT bathcarolynr highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT davidsonsophiee highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT sawbridgetimi highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT guthridgekathrynm highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT cocksbeng highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing
AT hayesbenj highthroughputwholerumenmetagenomeprofilingusinguntargetedmassivelyparallelsequencing