Cargando…
DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data
BACKGROUND: Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM) uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression le...
Autores principales: | Schulz, Marcel H, Devanny, William E, Gitter, Anthony, Zhong, Shan, Ernst, Jason, Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464930/ https://www.ncbi.nlm.nih.gov/pubmed/22897824 http://dx.doi.org/10.1186/1752-0509-6-104 |
Ejemplares similares
-
iDREM: Interactive visualization of dynamic regulatory networks
por: Ding, Jun, et al.
Publicado: (2018) -
STEM: a tool for the analysis of short time series gene expression data
por: Ernst, Jason, et al.
Publicado: (2006) -
ANAT 2.0: reconstructing functional protein subnetworks
por: Almozlino, Yomtov, et al.
Publicado: (2017) -
Reconstructing dynamic regulatory maps
por: Ernst, Jason, et al.
Publicado: (2007) -
PreDREM: a database of predicted DNA regulatory motifs from 349 human cell and tissue samples
por: Zheng, Yiyu, et al.
Publicado: (2015)