Cargando…
Thematic clustering of text documents using an EM-based approach
Clustering textual contents is an important step in mining useful information on the web or other text-based resources. The common task in text clustering is to handle text in a multi-dimensional space, and to partition documents into groups, where each group contains documents that are similar to e...
Autores principales: | Kim, Sun, Wilbur, W John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465205/ https://www.ncbi.nlm.nih.gov/pubmed/23046528 http://dx.doi.org/10.1186/2041-1480-3-S3-S6 |
Ejemplares similares
-
The ineffectiveness of within-document term frequency in text classification
por: Wilbur, W. John, et al.
Publicado: (2008) -
Dynamic Sub-Swarm Approach of PSO Algorithms for Text Document Clustering
por: Selvaraj, Suganya, et al.
Publicado: (2022) -
Discovering Thematically Coherent Biomedical Documents Using Contextualized Bidirectional Encoder Representations from Transformers-Based Clustering
por: Davagdorj, Khishigsuren, et al.
Publicado: (2022) -
Algorithm for thematic analysis of digital documents
por: Polo Bautista, Luis Roberto, et al.
Publicado: (2021) -
Text Mining in Biomedical Domain with Emphasis on Document Clustering
por: Renganathan, Vinaitheerthan
Publicado: (2017)