Cargando…
Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial
BACKGROUND: Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. METHODS: We conducted a randomized, double-blinded, placebo controlled trial to observe effects of p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465223/ https://www.ncbi.nlm.nih.gov/pubmed/22992437 http://dx.doi.org/10.1186/1550-2783-9-45 |
_version_ | 1782245531478654976 |
---|---|
author | Lamprecht, Manfred Bogner, Simon Schippinger, Gert Steinbauer, Kurt Fankhauser, Florian Hallstroem, Seth Schuetz, Burkhard Greilberger, Joachim F |
author_facet | Lamprecht, Manfred Bogner, Simon Schippinger, Gert Steinbauer, Kurt Fankhauser, Florian Hallstroem, Seth Schuetz, Burkhard Greilberger, Joachim F |
author_sort | Lamprecht, Manfred |
collection | PubMed |
description | BACKGROUND: Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. METHODS: We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (10(10) CFU/day, Ecologic®Performance or OMNi-BiOTiC®POWER, n = 11) or placebo (n = 12) for 14 weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14 weeks. Zonulin and α1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14 weeks, before and immediately post exercise, to determine carbonyl proteins (CP), malondialdehyde (MDA), total oxidation status of lipids (TOS), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Statistical analysis used multifactorial analysis of variance (ANOVA). Level of significance was set at p < 0.05, a trend at p < 0.1. RESULTS: Zonulin decreased with supplementation from values slightly above normal into normal ranges (<30 ng/ml) and was significantly lower after 14 weeks with probiotics compared to placebo (p = 0.019). We observed no influence on α1-antitrypsin (p > 0.1). CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14 weeks of treatment (p = 0.006). After 14 weeks, CP concentrations were tendentially lower with probiotics (p = 0.061). TOS was slightly increased above normal in both groups, at baseline and after 14 weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-α concentrations than normal. After 14 weeks TNF-α was tendentially lower in the supplemented group (p = 0.054). IL-6 increased significantly from pre to post exercise in both groups (p = 0.001), but supplementation had no effect. MDA was not influenced, neither by supplementation nor by exercise. CONCLUSIONS: The probiotic treatment decreased Zonulin in feces, a marker indicating enhanced gut permeability. Moreover, probiotic supplementation beneficially affected TNF-α and exercise induced protein oxidation. These results demonstrate promising benefits for probiotic use in trained men. CLINICAL TRIAL REGISTRY: http://www.clinicaltrials.gov, identifier: NCT01474629 |
format | Online Article Text |
id | pubmed-3465223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34652232012-10-06 Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial Lamprecht, Manfred Bogner, Simon Schippinger, Gert Steinbauer, Kurt Fankhauser, Florian Hallstroem, Seth Schuetz, Burkhard Greilberger, Joachim F J Int Soc Sports Nutr Research Article BACKGROUND: Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. METHODS: We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (10(10) CFU/day, Ecologic®Performance or OMNi-BiOTiC®POWER, n = 11) or placebo (n = 12) for 14 weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14 weeks. Zonulin and α1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14 weeks, before and immediately post exercise, to determine carbonyl proteins (CP), malondialdehyde (MDA), total oxidation status of lipids (TOS), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Statistical analysis used multifactorial analysis of variance (ANOVA). Level of significance was set at p < 0.05, a trend at p < 0.1. RESULTS: Zonulin decreased with supplementation from values slightly above normal into normal ranges (<30 ng/ml) and was significantly lower after 14 weeks with probiotics compared to placebo (p = 0.019). We observed no influence on α1-antitrypsin (p > 0.1). CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14 weeks of treatment (p = 0.006). After 14 weeks, CP concentrations were tendentially lower with probiotics (p = 0.061). TOS was slightly increased above normal in both groups, at baseline and after 14 weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-α concentrations than normal. After 14 weeks TNF-α was tendentially lower in the supplemented group (p = 0.054). IL-6 increased significantly from pre to post exercise in both groups (p = 0.001), but supplementation had no effect. MDA was not influenced, neither by supplementation nor by exercise. CONCLUSIONS: The probiotic treatment decreased Zonulin in feces, a marker indicating enhanced gut permeability. Moreover, probiotic supplementation beneficially affected TNF-α and exercise induced protein oxidation. These results demonstrate promising benefits for probiotic use in trained men. CLINICAL TRIAL REGISTRY: http://www.clinicaltrials.gov, identifier: NCT01474629 BioMed Central 2012-09-20 /pmc/articles/PMC3465223/ /pubmed/22992437 http://dx.doi.org/10.1186/1550-2783-9-45 Text en Copyright ©2012 Lamprecht et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lamprecht, Manfred Bogner, Simon Schippinger, Gert Steinbauer, Kurt Fankhauser, Florian Hallstroem, Seth Schuetz, Burkhard Greilberger, Joachim F Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title | Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title_full | Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title_fullStr | Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title_full_unstemmed | Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title_short | Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
title_sort | probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465223/ https://www.ncbi.nlm.nih.gov/pubmed/22992437 http://dx.doi.org/10.1186/1550-2783-9-45 |
work_keys_str_mv | AT lamprechtmanfred probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT bognersimon probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT schippingergert probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT steinbauerkurt probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT fankhauserflorian probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT hallstroemseth probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT schuetzburkhard probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial AT greilbergerjoachimf probioticsupplementationaffectsmarkersofintestinalbarrieroxidationandinflammationintrainedmenarandomizeddoubleblindedplacebocontrolledtrial |