Cargando…
Analyzing Self-Similar and Fractal Properties of the C. elegans Neural Network
The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons). A better understanding of the struct...
Autores principales: | Reese, Tyler M., Brzoska, Antoni, Yott, Dylan T., Kelleher, Daniel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465333/ https://www.ncbi.nlm.nih.gov/pubmed/23071485 http://dx.doi.org/10.1371/journal.pone.0040483 |
Ejemplares similares
-
Regularized Laplacian determinants of self-similar fractals
por: Chen, Joe P., et al.
Publicado: (2017) -
Insulin signaling shapes fractal scaling of C. elegans behavior
por: Arata, Yukinobu, et al.
Publicado: (2022) -
On the use of fractals to analyze HEP data
por: Messersmith, E J, et al.
Publicado: (1990) -
How children perceive fractals: Hierarchical self-similarity and cognitive development
por: Martins, Maurício Dias, et al.
Publicado: (2014) -
Using fractal self‐similarity to increase precision of shrub biomass estimates
por: Dial, Roman J., et al.
Publicado: (2021)