Cargando…

Hydroxyapatite Formation on a Novel Dental Cement in Human Saliva

Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to st...

Descripción completa

Detalles Bibliográficos
Autores principales: Engstrand, Johanna, Unosson, Erik, Engqvist, Håkan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scholarly Research Network 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465935/
https://www.ncbi.nlm.nih.gov/pubmed/23056955
http://dx.doi.org/10.5402/2012/624056
Descripción
Sumario:Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to study the surface reactions occurring in human salvia on a novel dental cement. Ceramir Crown & Bridge, a bioceramic luting agent intended for permanent cementation of conventional oral prosthetics, was evaluated by immersing discs made from the cement in human saliva and phosphate buffered saline (PBS) for seven days, after which they were dried and analyzed. The analytical methods used in order to verify HA formation on the surface were grazing incidence X-ray diffraction (GI-XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results showed that HA was formed on the surfaces of samples stored in saliva as well as on samples stored in PBS. The possibility of a dental luting cement to promote natural formation of HA at the tooth interface increases the stability and durability of the system and could help prevent secondary caries.