Cargando…

Thermal Stability of Cpl-7 Endolysin from the Streptococcus pneumoniae Bacteriophage Cp-7; Cell Wall-Targeting of Its CW_7 Motifs

Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully con...

Descripción completa

Detalles Bibliográficos
Autores principales: Bustamante, Noemí, Rico-Lastres, Palma, García, Ernesto, García, Pedro, Menéndez, Margarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466307/
https://www.ncbi.nlm.nih.gov/pubmed/23056389
http://dx.doi.org/10.1371/journal.pone.0046654
Descripción
Sumario:Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully conserved CW_7 repeats essential for activity. Firstly identified in the Cpl-7 endolysin, CW_7 motifs are also present in a great variety of cell wall hydrolases encoded, among others, by human and live-stock pathogens. However, the nature of CW_7 receptors on the bacterial envelope remains unknown. In the present study, the structural stability of Cpl-7 and the target recognized by CW_7 repeats, relevant for exploitation of Cpl-7 as antimicrobial, have been analyzed, and transitions from the CM and the CWBM assigned, using circular dichroism and differential scanning calorimetry. Cpl-7 stability is maximum around 6.0–6.5, near the optimal pH for activity. Above pH 8.0 the CM becomes extremely unstable, probably due to deprotonation of the N-terminal amino-group, whereas the CWBM is rather insensitive to pH variation and its structural stabilization by GlcNAc-MurNAc-l-Ala-d-isoGln points to the cell wall muropeptide as the cell wall target recognized by the CW_7 repeats. Denaturation data also revealed that Cpl-7 is organized into two essentially independent folding units, which will facilitate the recombination of the CM and the CWBM with other catalytic domains and/or cell wall-binding motifs to yield new tailored chimeric lysins with higher bactericidal activities or new pathogen specificities.