Cargando…
QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261
N-acyl-homoserine lactones (AHLs) are the main quorum-sensing (QS) signals in gram-negative bacteria. AHLs trigger the expression of genes for particular biological functions when their density reaches a threshold. In this study, we identified and cloned the qsdH gene by screening a genomic library...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466314/ https://www.ncbi.nlm.nih.gov/pubmed/23056356 http://dx.doi.org/10.1371/journal.pone.0046587 |
_version_ | 1782245673757835264 |
---|---|
author | Huang, Wei Lin, Yongjun Yi, Shuyuan Liu, Pengfu Shen, Jie Shao, Zongze Liu, Ziduo |
author_facet | Huang, Wei Lin, Yongjun Yi, Shuyuan Liu, Pengfu Shen, Jie Shao, Zongze Liu, Ziduo |
author_sort | Huang, Wei |
collection | PubMed |
description | N-acyl-homoserine lactones (AHLs) are the main quorum-sensing (QS) signals in gram-negative bacteria. AHLs trigger the expression of genes for particular biological functions when their density reaches a threshold. In this study, we identified and cloned the qsdH gene by screening a genomic library of Pseudoalteromonas byunsanensis strain 1A01261, which has AHL-degrading activity. The qsdH gene encoded a GDSL hydrolase found to be located in the N-terminus of a multidrug efflux transporter protein of the resistance-nodulation-cell division (RND) family. We further confirmed that the GDSL hydrolase, QsdH, exhibited similar AHL-degrading activity to the full-length ORF protein. QsdH was expressed and purified to process the N-terminal signal peptide yielding a 27-kDa mature protein. QsdH was capable of inactivating AHLs with an acyl chain ranging from C(4) to C(14) with or without 3-oxo substitution. High-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) analyses showed that QsdH functioned as an AHL lactonase to hydrolyze the ester bond of the homoserine lactone ring of AHLs. In addition, site-directed mutagenesis demonstrated that QsdH contained oxyanion holes (Ser-Gly-Asn) in conserved blocks (I, II, and III), which had important roles in its AHL-degrading activity. Furthermore, the lactonase activity of QsdH was slightly promoted by several divalent ions. Using in silico prediction, we concluded that QsdH was located at the first periplasmic loop of the multidrug efflux transporter protein, which is essential to substrate selectivity for these efflux pumps. These findings led us to assume that the QsdH lactonase and C-terminal efflux pump might be effective in quenching QS of the P. byunsanensis strain 1A01261. Moreover, it was observed that recombinant Escherichia coli producing QsdH proteins attenuated the plant pathogenicity of Erwinia carotovora, which might have potential to control of gram-negative pathogenic bacteria. |
format | Online Article Text |
id | pubmed-3466314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34663142012-10-10 QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 Huang, Wei Lin, Yongjun Yi, Shuyuan Liu, Pengfu Shen, Jie Shao, Zongze Liu, Ziduo PLoS One Research Article N-acyl-homoserine lactones (AHLs) are the main quorum-sensing (QS) signals in gram-negative bacteria. AHLs trigger the expression of genes for particular biological functions when their density reaches a threshold. In this study, we identified and cloned the qsdH gene by screening a genomic library of Pseudoalteromonas byunsanensis strain 1A01261, which has AHL-degrading activity. The qsdH gene encoded a GDSL hydrolase found to be located in the N-terminus of a multidrug efflux transporter protein of the resistance-nodulation-cell division (RND) family. We further confirmed that the GDSL hydrolase, QsdH, exhibited similar AHL-degrading activity to the full-length ORF protein. QsdH was expressed and purified to process the N-terminal signal peptide yielding a 27-kDa mature protein. QsdH was capable of inactivating AHLs with an acyl chain ranging from C(4) to C(14) with or without 3-oxo substitution. High-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) analyses showed that QsdH functioned as an AHL lactonase to hydrolyze the ester bond of the homoserine lactone ring of AHLs. In addition, site-directed mutagenesis demonstrated that QsdH contained oxyanion holes (Ser-Gly-Asn) in conserved blocks (I, II, and III), which had important roles in its AHL-degrading activity. Furthermore, the lactonase activity of QsdH was slightly promoted by several divalent ions. Using in silico prediction, we concluded that QsdH was located at the first periplasmic loop of the multidrug efflux transporter protein, which is essential to substrate selectivity for these efflux pumps. These findings led us to assume that the QsdH lactonase and C-terminal efflux pump might be effective in quenching QS of the P. byunsanensis strain 1A01261. Moreover, it was observed that recombinant Escherichia coli producing QsdH proteins attenuated the plant pathogenicity of Erwinia carotovora, which might have potential to control of gram-negative pathogenic bacteria. Public Library of Science 2012-10-08 /pmc/articles/PMC3466314/ /pubmed/23056356 http://dx.doi.org/10.1371/journal.pone.0046587 Text en © 2012 Huang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Huang, Wei Lin, Yongjun Yi, Shuyuan Liu, Pengfu Shen, Jie Shao, Zongze Liu, Ziduo QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title | QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title_full | QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title_fullStr | QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title_full_unstemmed | QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title_short | QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261 |
title_sort | qsdh, a novel ahl lactonase in the rnd-type inner membrane of marine pseudoalteromonas byunsanensis strain 1a01261 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466314/ https://www.ncbi.nlm.nih.gov/pubmed/23056356 http://dx.doi.org/10.1371/journal.pone.0046587 |
work_keys_str_mv | AT huangwei qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT linyongjun qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT yishuyuan qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT liupengfu qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT shenjie qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT shaozongze qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 AT liuziduo qsdhanovelahllactonaseintherndtypeinnermembraneofmarinepseudoalteromonasbyunsanensisstrain1a01261 |