Cargando…
Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy
Enriching plant tissues with (13)C and (15)N isotopes has provided long-lasting, non-reactive tracers to quantify rates of terrestrial elemental fluxes (e.g., soil organic matter decomposition). However, the molecular location and level of isotope enrichment may differ among plant tissues. This fact...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466447/ https://www.ncbi.nlm.nih.gov/pubmed/23056911 http://dx.doi.org/10.1038/srep00719 |
_version_ | 1782245685900345344 |
---|---|
author | Norris, Charlotte E. Quideau, Sylvie A. Landhäusser, Simon M. Bernard, Guy M. Wasylishen, Roderick E. |
author_facet | Norris, Charlotte E. Quideau, Sylvie A. Landhäusser, Simon M. Bernard, Guy M. Wasylishen, Roderick E. |
author_sort | Norris, Charlotte E. |
collection | PubMed |
description | Enriching plant tissues with (13)C and (15)N isotopes has provided long-lasting, non-reactive tracers to quantify rates of terrestrial elemental fluxes (e.g., soil organic matter decomposition). However, the molecular location and level of isotope enrichment may differ among plant tissues. This factor is central to the integrity and interpretation of tracer data, but is seldom considered in experiments. We propose a rapid, non-destructive method to quantify molecular isotope allocation using solid-state (13)C and (15)N nuclear magnetic resonance spectroscopy. With this method, we tracked and quantified the fate of multiple pulses of (13)CO(2)(g) and K (15)NO(3)(l) in boreal tree seedling roots and leaves as a function of time. Results show that initial preferential (13)C carbohydrate enrichment in the leaves was followed by redistribution to more complex compounds after seven days. While (13)C allocation within the roots was uniform across molecules, (15)N results indicate an initial enrichment of amine molecules after two hours. |
format | Online Article Text |
id | pubmed-3466447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-34664472012-10-10 Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy Norris, Charlotte E. Quideau, Sylvie A. Landhäusser, Simon M. Bernard, Guy M. Wasylishen, Roderick E. Sci Rep Article Enriching plant tissues with (13)C and (15)N isotopes has provided long-lasting, non-reactive tracers to quantify rates of terrestrial elemental fluxes (e.g., soil organic matter decomposition). However, the molecular location and level of isotope enrichment may differ among plant tissues. This factor is central to the integrity and interpretation of tracer data, but is seldom considered in experiments. We propose a rapid, non-destructive method to quantify molecular isotope allocation using solid-state (13)C and (15)N nuclear magnetic resonance spectroscopy. With this method, we tracked and quantified the fate of multiple pulses of (13)CO(2)(g) and K (15)NO(3)(l) in boreal tree seedling roots and leaves as a function of time. Results show that initial preferential (13)C carbohydrate enrichment in the leaves was followed by redistribution to more complex compounds after seven days. While (13)C allocation within the roots was uniform across molecules, (15)N results indicate an initial enrichment of amine molecules after two hours. Nature Publishing Group 2012-10-09 /pmc/articles/PMC3466447/ /pubmed/23056911 http://dx.doi.org/10.1038/srep00719 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Norris, Charlotte E. Quideau, Sylvie A. Landhäusser, Simon M. Bernard, Guy M. Wasylishen, Roderick E. Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title | Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title_full | Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title_fullStr | Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title_full_unstemmed | Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title_short | Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy |
title_sort | tracking stable isotope enrichment in tree seedlings with solid-state nmr spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466447/ https://www.ncbi.nlm.nih.gov/pubmed/23056911 http://dx.doi.org/10.1038/srep00719 |
work_keys_str_mv | AT norrischarlottee trackingstableisotopeenrichmentintreeseedlingswithsolidstatenmrspectroscopy AT quideausylviea trackingstableisotopeenrichmentintreeseedlingswithsolidstatenmrspectroscopy AT landhaussersimonm trackingstableisotopeenrichmentintreeseedlingswithsolidstatenmrspectroscopy AT bernardguym trackingstableisotopeenrichmentintreeseedlingswithsolidstatenmrspectroscopy AT wasylishenrodericke trackingstableisotopeenrichmentintreeseedlingswithsolidstatenmrspectroscopy |