Cargando…
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient...
Autores principales: | Wang, Deng, Miao, Duoqian, Blohm, Gunnar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466781/ https://www.ncbi.nlm.nih.gov/pubmed/23087607 http://dx.doi.org/10.3389/fnins.2012.00151 |
Ejemplares similares
-
Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface
por: Triana-Guzman, Nayid, et al.
Publicado: (2022) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
por: Roy, Sujit, et al.
Publicado: (2020) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018)