Cargando…
EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers
The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLC) to tyrosine kinase inhibitors (TKIs) has been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negativel...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467100/ https://www.ncbi.nlm.nih.gov/pubmed/22157681 http://dx.doi.org/10.1038/nm.2577 |
Sumario: | The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLC) to tyrosine kinase inhibitors (TKIs) has been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. To understand the role of microRNAs in TKI-resistant NSCLC, we examined TK receptor-mediated microRNA changes. Here we report that miR-30b/c and miR-221/222, modulated by both EGF and MET receptors, and miR-103, -203, controlled only by MET, play important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition (EMT) of NSCLC cells, in vitro and in vivo, by inhibiting the expression of Bim, APAF-1, PKC-ε and SRC genes. The finding suggests that modulation of specific microRNAs may provide a therapeutic approach for future treatment of NSCLC. |
---|