Cargando…

Sexually dimorphic effect of aging on skeletal muscle protein synthesis

BACKGROUND: Although there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover di...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Gordon I, Reeds, Dominic N, Hall, Angela M, Chambers, Kari T, Finck, Brian N, Mittendorfer, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467175/
https://www.ncbi.nlm.nih.gov/pubmed/22620287
http://dx.doi.org/10.1186/2042-6410-3-11
_version_ 1782245756909912064
author Smith, Gordon I
Reeds, Dominic N
Hall, Angela M
Chambers, Kari T
Finck, Brian N
Mittendorfer, Bettina
author_facet Smith, Gordon I
Reeds, Dominic N
Hall, Angela M
Chambers, Kari T
Finck, Brian N
Mittendorfer, Bettina
author_sort Smith, Gordon I
collection PubMed
description BACKGROUND: Although there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover differently in men and women. METHODS: We measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old women (65–85 y). RESULTS: The basal muscle protein FSR was not different in young and old men (0.040 ± 0.004 and 0.043 ± 0.005%·h(-1), respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR both in young (to 0.063 ± 0.006%·h(-1)) and old (to 0.051 ± 0.008%·h(-1)) men but the increase (0.023 ± 0.004 vs. 0.009 ± 0.004%·h(-1), respectively) was ~60% less in the old men (P = 0.03). In contrast, the basal muscle protein FSR was ~30% greater in old than young women (0.060 ± 0.003 vs. 0.046 ± 0.004%·h(-1), respectively; P < 0.05) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P < 0.01) but not in old women (P = 0.10) so that the FSR was not different between young and old women during the clamp (0.074 ± 0.006%·h(-1) vs. 0.072 ± 0.006%·h(-1), respectively). CONCLUSIONS: There is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the metabolic processes responsible for the age-related decline in muscle mass.
format Online
Article
Text
id pubmed-3467175
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34671752012-10-10 Sexually dimorphic effect of aging on skeletal muscle protein synthesis Smith, Gordon I Reeds, Dominic N Hall, Angela M Chambers, Kari T Finck, Brian N Mittendorfer, Bettina Biol Sex Differ Research BACKGROUND: Although there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover differently in men and women. METHODS: We measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old women (65–85 y). RESULTS: The basal muscle protein FSR was not different in young and old men (0.040 ± 0.004 and 0.043 ± 0.005%·h(-1), respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR both in young (to 0.063 ± 0.006%·h(-1)) and old (to 0.051 ± 0.008%·h(-1)) men but the increase (0.023 ± 0.004 vs. 0.009 ± 0.004%·h(-1), respectively) was ~60% less in the old men (P = 0.03). In contrast, the basal muscle protein FSR was ~30% greater in old than young women (0.060 ± 0.003 vs. 0.046 ± 0.004%·h(-1), respectively; P < 0.05) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P < 0.01) but not in old women (P = 0.10) so that the FSR was not different between young and old women during the clamp (0.074 ± 0.006%·h(-1) vs. 0.072 ± 0.006%·h(-1), respectively). CONCLUSIONS: There is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the metabolic processes responsible for the age-related decline in muscle mass. BioMed Central 2012-05-23 /pmc/articles/PMC3467175/ /pubmed/22620287 http://dx.doi.org/10.1186/2042-6410-3-11 Text en Copyright ©2012 Smith et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Smith, Gordon I
Reeds, Dominic N
Hall, Angela M
Chambers, Kari T
Finck, Brian N
Mittendorfer, Bettina
Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title_full Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title_fullStr Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title_full_unstemmed Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title_short Sexually dimorphic effect of aging on skeletal muscle protein synthesis
title_sort sexually dimorphic effect of aging on skeletal muscle protein synthesis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467175/
https://www.ncbi.nlm.nih.gov/pubmed/22620287
http://dx.doi.org/10.1186/2042-6410-3-11
work_keys_str_mv AT smithgordoni sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis
AT reedsdominicn sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis
AT hallangelam sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis
AT chamberskarit sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis
AT finckbriann sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis
AT mittendorferbettina sexuallydimorphiceffectofagingonskeletalmuscleproteinsynthesis