Cargando…

Left-Right Asymmetry in the Sea Urchin Embryo: BMP and the Asymmetrical Origins of the Adult

Bilateral animals, including humans and most metazoans, are not perfectly symmetrical. Some internal structures are distributed asymmetrically to the right or left side. A conserved Nodal and BMP signaling system directs molecular pathways that impart the sidedness to those asymmetric structures. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Warner, Jacob F., Lyons, Deirdre C., McClay, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467244/
https://www.ncbi.nlm.nih.gov/pubmed/23055829
http://dx.doi.org/10.1371/journal.pbio.1001404
Descripción
Sumario:Bilateral animals, including humans and most metazoans, are not perfectly symmetrical. Some internal structures are distributed asymmetrically to the right or left side. A conserved Nodal and BMP signaling system directs molecular pathways that impart the sidedness to those asymmetric structures. In the sea urchin embryo, one such asymmetrical structure, oddly enough, is the entire adult, which grows out of left sided structures produced in the larva. In a paper just published in PLOS Biology, BMP signaling is shown to be necessary early in larval development to initiate the asymmetric specification of one of those left-sided structures, called the left coelomic pouch. This study reports that BMP signaling activates a group of transcription factors asymmetrically in the left coelomic pouch only, which launch the pathway that eventually leads to the formation of the adult that emerges from the larva at metamorphosis.