Cargando…

Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells

BACKGROUND: Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been li...

Descripción completa

Detalles Bibliográficos
Autores principales: Nsair, Ali, Schenke-Layland, Katja, Van Handel, Ben, Evseenko, Denis, Kahn, Michael, Zhao, Peng, Mendelis, Joseph, Heydarkhan, Sanaz, Awaji, Obina, Vottler, Miriam, Geist, Susanne, Chyu, Jennifer, Gago-Lopez, Nuria, Crooks, Gay M., Plath, Kathrin, Goldhaber, Josh, Mikkola, Hanna K. A., MacLellan, W. Robb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467279/
https://www.ncbi.nlm.nih.gov/pubmed/23056209
http://dx.doi.org/10.1371/journal.pone.0045603
Descripción
Sumario:BACKGROUND: Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been limited due to the lack of specific cell surface markers to isolate them and conditions for their in vitro expansion that maintain their multipotency. METHODOLOGY/PRINCIPAL FINDINGS: We sought to identify specific cell surface markers that label endogenous embryonic CPCs and validated these markers in iPSC-derived Isl1(+)/Nkx2.5(+) CPCs. We developed conditions that allow propagation and characterization of endogenous and iPSC-derived Isl1(+)/Nkx2.5(+) CPCs and protocols for their clonal expansion in vitro and transplantation in vivo. Transcriptome analysis of CPCs from differentiating mouse embryonic stem cells identified a panel of surface markers. Comparison of these markers as well as previously described surface markers revealed the combination of Flt1(+)/Flt4(+) best identified and facilitated enrichment for Isl1(+)/Nkx2.5(+) CPCs from embryonic hearts and differentiating iPSCs. Endogenous mouse and iPSC-derived Flt1(+)/Flt4(+) CPCs differentiated into all three cardiovascular lineages in vitro. Flt1(+)/Flt4(+) CPCs transplanted into left ventricles demonstrated robust engraftment and differentiation into mature cardiomyocytes (CMs). CONCLUSION/SIGNIFICANCE: The cell surface marker combination of Flt1 and Flt4 specifically identify and enrich for an endogenous and iPSC-derived Isl1(+)/Nkx2.5(+) CPC with trilineage cardiovascular potential in vitro and robust ability for engraftment and differentiation into morphologically and electrophysiologically mature adult CMs in vivo post transplantation into adult hearts.