Cargando…
Positive-unlabeled learning for disease gene identification
Background: Identifying disease genes from human genome is an important but challenging task in biomedical research. Machine learning methods can be applied to discover new disease genes based on the known ones. Existing machine learning methods typically use the known disease genes as the positive...
Autores principales: | Yang, Peng, Li, Xiao-Li, Mei, Jian-Ping, Kwoh, Chee-Keong, Ng, See-Kiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467748/ https://www.ncbi.nlm.nih.gov/pubmed/22923290 http://dx.doi.org/10.1093/bioinformatics/bts504 |
Ejemplares similares
-
Ensemble Positive Unlabeled Learning for Disease Gene Identification
por: Yang, Peng, et al.
Publicado: (2014) -
Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation
por: Yang, Peng, et al.
Publicado: (2011) -
NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification
por: Stolfi, Paola, et al.
Publicado: (2023) -
A core-attachment based method to detect protein complexes in PPI networks
por: Wu, Min, et al.
Publicado: (2009) -
Computational approaches for detecting protein complexes from protein interaction networks: a survey
por: Li, Xiaoli, et al.
Publicado: (2010)