Cargando…

The effects of weekly augmentation therapy in patients with PiZZ α1-antitrypsin deficiency

BACKGROUND: The major concept behind augmentation therapy with human α(1)-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. OBJECTIVE: To eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmid, ST, Koepke, J, Dresel, M, Hattesohl, A, Frenzel, E, Perez, J, Lomas, DA, Miranda, E, Greulich, T, Noeske, S, Wencker, M, Teschler, H, Vogelmeier, C, Janciauskiene, S, Koczulla, AR
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468059/
https://www.ncbi.nlm.nih.gov/pubmed/23055718
http://dx.doi.org/10.2147/COPD.S34560
Descripción
Sumario:BACKGROUND: The major concept behind augmentation therapy with human α(1)-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. OBJECTIVE: To evaluate the short-term effects of augmentation therapy (Prolastin(®)) on plasma levels of AAT, C-reactive protein, and chemokines/cytokines. MATERIALS AND METHODS: Serum and exhaled breath condensate were collected from individuals with protease inhibitor phenotype ZZ AAT deficiency-related emphysema (n = 12) on the first, third, and seventh day after the infusion of intravenous Prolastin. Concentrations of total and polymeric AAT, interleukin-8 (IL-8), monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, vascular endothelial growth factor, and C-reactive protein were determined. Blood neutrophils and primary epithelial cells were also exposed to Prolastin (1 mg/mL). RESULTS: There were significant fluctuations in serum (but not in exhaled breath condensate) levels of AAT polymers, IL-8, monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor within a week of augmentation therapy. In general, augmented individuals had higher AAT and lower serum levels of IL-8 than nonaugmented subjects. Prolastin added for 3 hours to neutrophils from protease inhibitor phenotype ZZ individuals in vitro reduced IL-8 release but showed no effect on cytokine/chemokine release from human bronchial epithelial cells. CONCLUSION: Within a week, augmentation with Prolastin induced fluctuations in serum levels of AAT polymers and cytokine/chemokines but specifically lowered IL-8 levels. It remains to be determined whether these effects are related to the Prolastin preparation per se or to the therapeutic efficacy of augmentation with AAT.