Cargando…

Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy

BACKGROUND: Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutat...

Descripción completa

Detalles Bibliográficos
Autores principales: Betancor, Gilberto, Garriga, César, Puertas, Maria C, Nevot, María, Anta, Lourdes, Blanco, José L, Pérez-Elías, M Jesús, de Mendoza, Carmen, Martínez, Miguel A, Martinez-Picado, Javier, Menéndez-Arias, Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468358/
https://www.ncbi.nlm.nih.gov/pubmed/22889300
http://dx.doi.org/10.1186/1742-4690-9-68
_version_ 1782245934893105152
author Betancor, Gilberto
Garriga, César
Puertas, Maria C
Nevot, María
Anta, Lourdes
Blanco, José L
Pérez-Elías, M Jesús
de Mendoza, Carmen
Martínez, Miguel A
Martinez-Picado, Javier
Menéndez-Arias, Luis
author_facet Betancor, Gilberto
Garriga, César
Puertas, Maria C
Nevot, María
Anta, Lourdes
Blanco, José L
Pérez-Elías, M Jesús
de Mendoza, Carmen
Martínez, Miguel A
Martinez-Picado, Javier
Menéndez-Arias, Luis
author_sort Betancor, Gilberto
collection PubMed
description BACKGROUND: Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. RESULTS: The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10(-10)) and TAMs (P < 10(-3)), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. CONCLUSIONS: Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations.
format Online
Article
Text
id pubmed-3468358
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34683582012-10-11 Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy Betancor, Gilberto Garriga, César Puertas, Maria C Nevot, María Anta, Lourdes Blanco, José L Pérez-Elías, M Jesús de Mendoza, Carmen Martínez, Miguel A Martinez-Picado, Javier Menéndez-Arias, Luis Retrovirology Research BACKGROUND: Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. RESULTS: The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10(-10)) and TAMs (P < 10(-3)), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. CONCLUSIONS: Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations. BioMed Central 2012-08-13 /pmc/articles/PMC3468358/ /pubmed/22889300 http://dx.doi.org/10.1186/1742-4690-9-68 Text en Copyright ©2012 Betancor et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Betancor, Gilberto
Garriga, César
Puertas, Maria C
Nevot, María
Anta, Lourdes
Blanco, José L
Pérez-Elías, M Jesús
de Mendoza, Carmen
Martínez, Miguel A
Martinez-Picado, Javier
Menéndez-Arias, Luis
Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title_full Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title_fullStr Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title_full_unstemmed Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title_short Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy
title_sort clinical, virological and biochemical evidence supporting the association of hiv-1 reverse transcriptase polymorphism r284k and thymidine analogue resistance mutations m41l, l210w and t215y in patients failing tenofovir/emtricitabine therapy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468358/
https://www.ncbi.nlm.nih.gov/pubmed/22889300
http://dx.doi.org/10.1186/1742-4690-9-68
work_keys_str_mv AT betancorgilberto clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT garrigacesar clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT puertasmariac clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT nevotmaria clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT antalourdes clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT blancojosel clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT perezeliasmjesus clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT demendozacarmen clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT martinezmiguela clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT martinezpicadojavier clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy
AT menendezariasluis clinicalvirologicalandbiochemicalevidencesupportingtheassociationofhiv1reversetranscriptasepolymorphismr284kandthymidineanalogueresistancemutationsm41ll210wandt215yinpatientsfailingtenofoviremtricitabinetherapy