Cargando…
Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass
Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468461/ https://www.ncbi.nlm.nih.gov/pubmed/23071756 http://dx.doi.org/10.1371/journal.pone.0047204 |
_version_ | 1782245951134498816 |
---|---|
author | Wang, Quanzhen Chen, Guo Yersaiyiti, Hayixia Liu, Yuan Cui, Jian Wu, Chunhui Zhang, Yunwei He, Xueqing |
author_facet | Wang, Quanzhen Chen, Guo Yersaiyiti, Hayixia Liu, Yuan Cui, Jian Wu, Chunhui Zhang, Yunwei He, Xueqing |
author_sort | Wang, Quanzhen |
collection | PubMed |
description | Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds. |
format | Online Article Text |
id | pubmed-3468461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34684612012-10-15 Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass Wang, Quanzhen Chen, Guo Yersaiyiti, Hayixia Liu, Yuan Cui, Jian Wu, Chunhui Zhang, Yunwei He, Xueqing PLoS One Research Article Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds. Public Library of Science 2012-10-10 /pmc/articles/PMC3468461/ /pubmed/23071756 http://dx.doi.org/10.1371/journal.pone.0047204 Text en © 2012 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Quanzhen Chen, Guo Yersaiyiti, Hayixia Liu, Yuan Cui, Jian Wu, Chunhui Zhang, Yunwei He, Xueqing Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title | Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title_full | Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title_fullStr | Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title_full_unstemmed | Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title_short | Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass |
title_sort | modeling analysis on germination and seedling growth using ultrasound seed pretreatment in switchgrass |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468461/ https://www.ncbi.nlm.nih.gov/pubmed/23071756 http://dx.doi.org/10.1371/journal.pone.0047204 |
work_keys_str_mv | AT wangquanzhen modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT chenguo modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT yersaiyitihayixia modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT liuyuan modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT cuijian modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT wuchunhui modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT zhangyunwei modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass AT hexueqing modelinganalysisongerminationandseedlinggrowthusingultrasoundseedpretreatmentinswitchgrass |