Cargando…
The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence
Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468604/ https://www.ncbi.nlm.nih.gov/pubmed/23071554 http://dx.doi.org/10.1371/journal.pone.0046321 |
_version_ | 1782245969604116480 |
---|---|
author | Alvarez-Crespo, Mayte Skibicka, Karolina P. Farkas, Imre Molnár, Csilla S. Egecioglu, Emil Hrabovszky, Erik Liposits, Zsolt Dickson, Suzanne L. |
author_facet | Alvarez-Crespo, Mayte Skibicka, Karolina P. Farkas, Imre Molnár, Csilla S. Egecioglu, Emil Hrabovszky, Erik Liposits, Zsolt Dickson, Suzanne L. |
author_sort | Alvarez-Crespo, Mayte |
collection | PubMed |
description | Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available. |
format | Online Article Text |
id | pubmed-3468604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34686042012-10-15 The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence Alvarez-Crespo, Mayte Skibicka, Karolina P. Farkas, Imre Molnár, Csilla S. Egecioglu, Emil Hrabovszky, Erik Liposits, Zsolt Dickson, Suzanne L. PLoS One Research Article Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available. Public Library of Science 2012-10-10 /pmc/articles/PMC3468604/ /pubmed/23071554 http://dx.doi.org/10.1371/journal.pone.0046321 Text en © 2012 Alvarez-Crespo et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Alvarez-Crespo, Mayte Skibicka, Karolina P. Farkas, Imre Molnár, Csilla S. Egecioglu, Emil Hrabovszky, Erik Liposits, Zsolt Dickson, Suzanne L. The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title | The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title_full | The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title_fullStr | The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title_full_unstemmed | The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title_short | The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence |
title_sort | amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468604/ https://www.ncbi.nlm.nih.gov/pubmed/23071554 http://dx.doi.org/10.1371/journal.pone.0046321 |
work_keys_str_mv | AT alvarezcrespomayte theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT skibickakarolinap theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT farkasimre theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT molnarcsillas theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT egeciogluemil theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT hrabovszkyerik theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT lipositszsolt theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT dicksonsuzannel theamygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT alvarezcrespomayte amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT skibickakarolinap amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT farkasimre amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT molnarcsillas amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT egeciogluemil amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT hrabovszkyerik amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT lipositszsolt amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence AT dicksonsuzannel amygdalaasaneurobiologicaltargetforghrelininratsneuroanatomicalelectrophysiologicalandbehavioralevidence |