Cargando…
Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices
Parallel Independent Component Analysis (para-ICA) is a multivariate method that can identify complex relationships between different data modalities by simultaneously performing Independent Component Analysis on each data set while finding mutual information between the two data sets. We use para-I...
Autores principales: | Meier, Timothy B., Wildenberg, Joseph C., Liu, Jingyu, Chen, Jiayu, Calhoun, Vince D., Biswal, Bharat B., Meyerand, Mary E., Birn, Rasmus M., Prabhakaran, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468957/ https://www.ncbi.nlm.nih.gov/pubmed/23087635 http://dx.doi.org/10.3389/fnhum.2012.00281 |
Ejemplares similares
-
Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity
por: Song, Jie, et al.
Publicado: (2012) -
Characterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data
por: Vergun, Svyatoslav, et al.
Publicado: (2013) -
An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders
por: Pearlson, Godfrey D., et al.
Publicado: (2015) -
Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA
por: Gupta, Cota Navin, et al.
Publicado: (2015) -
Age-Related Changes in Inter-Network Connectivity by Component Analysis
por: La, Christian, et al.
Publicado: (2015)