Cargando…
Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse
It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469566/ https://www.ncbi.nlm.nih.gov/pubmed/23071514 http://dx.doi.org/10.1371/journal.pone.0045362 |
_version_ | 1782246112519782400 |
---|---|
author | Queiroz, Karla C. S. Milani, Renato Ruela-de-Sousa, Roberta R. Fuhler, Gwenny M. Justo, Giselle Z. Zambuzzi, Willian F. Duran, Nelson Diks, Sander H. Spek, C. Arnold Ferreira, Carmen V. Peppelenbosch, Maikel P. |
author_facet | Queiroz, Karla C. S. Milani, Renato Ruela-de-Sousa, Roberta R. Fuhler, Gwenny M. Justo, Giselle Z. Zambuzzi, Willian F. Duran, Nelson Diks, Sander H. Spek, C. Arnold Ferreira, Carmen V. Peppelenbosch, Maikel P. |
author_sort | Queiroz, Karla C. S. |
collection | PubMed |
description | It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+)/c-Kit(+)/P-glycoprotein(+)/MRP1(+) TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells. |
format | Online Article Text |
id | pubmed-3469566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34695662012-10-15 Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse Queiroz, Karla C. S. Milani, Renato Ruela-de-Sousa, Roberta R. Fuhler, Gwenny M. Justo, Giselle Z. Zambuzzi, Willian F. Duran, Nelson Diks, Sander H. Spek, C. Arnold Ferreira, Carmen V. Peppelenbosch, Maikel P. PLoS One Research Article It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+)/c-Kit(+)/P-glycoprotein(+)/MRP1(+) TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells. Public Library of Science 2012-10-11 /pmc/articles/PMC3469566/ /pubmed/23071514 http://dx.doi.org/10.1371/journal.pone.0045362 Text en © 2012 Queiroz et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Queiroz, Karla C. S. Milani, Renato Ruela-de-Sousa, Roberta R. Fuhler, Gwenny M. Justo, Giselle Z. Zambuzzi, Willian F. Duran, Nelson Diks, Sander H. Spek, C. Arnold Ferreira, Carmen V. Peppelenbosch, Maikel P. Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title | Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title_full | Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title_fullStr | Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title_full_unstemmed | Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title_short | Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse |
title_sort | violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and golgi apparatus collapse |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469566/ https://www.ncbi.nlm.nih.gov/pubmed/23071514 http://dx.doi.org/10.1371/journal.pone.0045362 |
work_keys_str_mv | AT queirozkarlacs violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT milanirenato violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT rueladesousarobertar violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT fuhlergwennym violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT justogisellez violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT zambuzziwillianf violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT durannelson violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT dikssanderh violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT spekcarnold violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT ferreiracarmenv violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse AT peppelenboschmaikelp violaceininducesdeathofresistantleukaemiacellsviakinomereprogrammingendoplasmicreticulumstressandgolgiapparatuscollapse |