Cargando…

Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults

Using transcranial near-infrared spectroscopy (NIRS) to measure changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) during functional activation in healthy adults is hampered by instrumentation and algorithm issues. This study reports the Δ[oxCCO] response measured in such a setti...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolyva, Christina, Tachtsidis, Ilias, Ghosh, Arnab, Moroz, Tracy, Cooper, Chris E., Smith, Martin, Elwell, Clare E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469997/
https://www.ncbi.nlm.nih.gov/pubmed/23082295
http://dx.doi.org/10.1364/BOE.3.002550
Descripción
Sumario:Using transcranial near-infrared spectroscopy (NIRS) to measure changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) during functional activation in healthy adults is hampered by instrumentation and algorithm issues. This study reports the Δ[oxCCO] response measured in such a setting and investigates possible confounders of this measurement. Continuous frontal lobe NIRS measurements were collected from 11 healthy volunteers during a 6-minute anagram-solving task, using a hybrid optical spectrometer (pHOS) that combines multi-distance frequency and broadband components. Only data sets showing a hemodynamic response consistent with functional activation were interrogated for a Δ[oxCCO] response. Simultaneous systemic monitoring data were also available. Possible influences on the Δ[oxCCO] response were systematically investigated and there was no effect of: 1) wavelength range chosen for fitting the measured attenuation spectra; 2) constant or measured, with the pHOS in real-time, differential pathlength factor; 3) systemic hemodynamic changes during functional activation; 4) changes in optical scattering during functional activation. The Δ[oxCCO] response measured in the presence of functional activation was heterogeneous, with the majority of subjects showing significant increase in oxidation, but others having a decrease. We conclude that the heterogeneity in the Δ[oxCCO] response is physiological and not induced by confounding factors in the measurements.