Cargando…

Modulation of Caenorhabditis elegans infection sensitivity by the LIN-7 cell junction protein

In Caenorhabditis elegans, the LIN-2/7/10 protein complex regulates the activity of signalling proteins. We found that inhibiting lin-7 function, and also lin-2 and lin-10, resulted in enhanced C. elegans survival after infection by Burkholderia spp., implicating a novel role for these genes in modu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sem, XiaoHui, Kreisberg, Jason F, Kawli, Trupti, Tan, Man-Wah, Rhen, Mikael, Tan, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470699/
https://www.ncbi.nlm.nih.gov/pubmed/22672310
http://dx.doi.org/10.1111/j.1462-5822.2012.01824.x
Descripción
Sumario:In Caenorhabditis elegans, the LIN-2/7/10 protein complex regulates the activity of signalling proteins. We found that inhibiting lin-7 function, and also lin-2 and lin-10, resulted in enhanced C. elegans survival after infection by Burkholderia spp., implicating a novel role for these genes in modulating infection outcomes. Genetic experiments suggested that this infection phenotype is likely caused by modulation of the DAF-2 insulin/IGF-1 signalling pathway. Supporting these observations, yeast two-hybrid assays confirmed that the LIN-2 PDZ domain can physically bind to the DAF-2 C-terminus. Loss of lin-7 activity also altered DAF-16 nuclear localization kinetics, indicating an additional contribution by hsf-1. Unexpectedly, silencing lin-7 in the hypodermis, but not the intestine, was protective against infection, implicating the hypodermis as a key tissue in this phenomenon. Finally, consistent with lin-7 acting as a general host infection factor, lin-7 mutants also exhibited enhanced survival upon infectionby two other Gram-negative pathogens, Pseudomonas and Salmonella spp.